Advertisement

JOM

pp 1–11 | Cite as

Evolution of Fracture Mode in Nano-twinned Fe-1.1C-12.5Mn Steel

  • Mahmoud Khedr
  • Li WeiEmail author
  • Min Na
  • Li Yu
  • Jin XuejunEmail author
Advanced High-Strength Steels for Automobiles
  • 15 Downloads

Abstract

The evolution of fracture mode was investigated in Fe-1.1C-12.5Mn steel with prior introduced nano-twinned structures. The thicknesses of the prior twin plates were manipulated by thermo-mechanical treatments. During the plastic deformation, thin prior twin plates (30–40 nm) were penetrated by dislocations which activated secondary twin systems, and therefore dimple features were promoted in the fractured surfaces due to dislocation accommodation within the nano-twin plates. However, dislocation pile-up on the boundaries of the thick prior twin plates (90 nm) led to trans-granular fracture and formation of cracks. Moreover, prior twin elimination enhanced inter-granular feature appearance in the fractured surfaces because of dislocation accumulation on grain boundaries.

Notes

Acknowledgements

The authors are grateful to the financial support of the Chinese Scholarship Council (CSC), National Key R&D Program of China (No. 2017YFB0703003), National Natural Science Foundation of China (U1564203, Nos. 51571141 and 51201105), the Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2014MS23), and the support sponsored by Program of Shanghai Academic Research Leader and provided by Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University. In addition, this research was supported by the Tescan China and Baosteel companies.

Supplementary material

11837_2019_3329_MOESM1_ESM.pdf (381 kb)
Supplementary material 1 (PDF 380 kb)

References

  1. 1.
    Z.C. Luo and M.X. Huang, Scr. Mater. 142, 28 (2018).CrossRefGoogle Scholar
  2. 2.
    B.C. DeCooman, Y. Estrin, and S.K. Kim, Acta Mater. 142, 283 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40A, 3076 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques, Acta Mater. 58, 2464 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, Scr. Mater. 63, 961 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Renard, H. Idrissi, D. Schryvers, and P.J. Jacques, Scr. Mater. 66, 966 (2012).CrossRefGoogle Scholar
  7. 7.
    P. Chowdhury, H. Sehitoglu, and R. Rateick, Curr. Opin. Sol. Stat. Mater. Sci. 20, 140 (2016).CrossRefGoogle Scholar
  8. 8.
    J.R. Greer, Nat. Mater. 12, 689 (2013).CrossRefGoogle Scholar
  9. 9.
    N. Hansen, Scr. Mater. 51, 801 (2004).CrossRefGoogle Scholar
  10. 10.
    D. Canadinc, C. Efstathiou, and H. Sehitoglu, Scr. Mater. 59, 1103 (2008).CrossRefGoogle Scholar
  11. 11.
    F.C. Liu, Z.N. Yang, C.L. Zheng, and F.C. Zhang, Scr. Mater. 66, 431 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Chin, C. Kang, S. Shin, S. Hong, S. Lee, H. Kim, K. Kim, and N. Kim, Mater. Sci. Eng. A 528A, 2922 (2011).CrossRefGoogle Scholar
  13. 13.
    T. Michler, C.S. Marchi, J. Naumann, S. Weber, and M. Martin, Int. J. Hydrogen Energy 37, 16231 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Khedr, W. Li, X. Zhu, P. Zhou, S. Gao, and X. Jin, Mater. Sci. Eng. A 712A, 133 (2018).CrossRefGoogle Scholar
  15. 15.
    K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Science 355, 1292 (2017).CrossRefGoogle Scholar
  17. 17.
    F.K. Yan, G.Z. Liu, N.R. Tao, and K. Lu, Acta Mater. 60, 1059 (2012).CrossRefGoogle Scholar
  18. 18.
    L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Acta Mater. 53, 2169 (2005).CrossRefGoogle Scholar
  19. 19.
    C. Chen, F.C. Zhang, F. Wang, H. Liu, and B.D. Yu, Mater. Sci. Eng. A 679A, 95 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Goldberg, O.A. Ruano, and O.D. Sherby, Mater. Sci. Eng. A 150A, 187 (1992).CrossRefGoogle Scholar
  21. 21.
    L. Lutterotti, MAUD, Version 2.55 (2016). http://www.ing.unitn.it/~luttero/maud.
  22. 22.
    D. Drozdenkoa, J. Bohlenb, S. Yib, P. Minárika, F. Chmelíka, and P. Dobroň, Acta Mater. 110, 103 (2016).CrossRefGoogle Scholar
  23. 23.
    O. Bouaziz, Y. Estrin, Y. Brechet, and J.D. Embury, Scr. Mater. 63, 477 (2010).CrossRefGoogle Scholar
  24. 24.
    J.-Y. Kim, Y. Estrin, H. Beladi, I. Timokhina, K.-G. Chin, S.-K. Kim, and B.C. DeCooman, Metall. Mater. Trans. A 43A, 479 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Jeong, J. Jin, Y. Jung, S. Kang, and Y. Lee, Acta Mater. 61, 3399 (2013).CrossRefGoogle Scholar
  26. 26.
    G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527A, 2759 (2010).CrossRefGoogle Scholar
  27. 27.
    Z.Y. Liang, Y.Z. Li, and M.X. Huang, Scr. Mater. 112, 28 (2016).CrossRefGoogle Scholar
  28. 28.
    O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 319A, 246 (2001).CrossRefGoogle Scholar
  29. 29.
    N. Lu, K. Du, L. Lu, and H.Q. Ye, Nat. Commun. 6, 7648 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Jin and Y. Lee, Acta Mater. 60, 1680 (2012).CrossRefGoogle Scholar
  31. 31.
    E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, and H.J. Maier, Mater. Sci. Eng. A 604A, 166 (2014).CrossRefGoogle Scholar
  32. 32.
    L. Zhu, C. Wen, C. Gao, X. Guo, and J. Lu, Scr. Mater. 133, 49 (2017).CrossRefGoogle Scholar
  33. 33.
    F. Hamdi and S. Asgari, Metal. Mater. Trans. A 39A, 294 (2008).CrossRefGoogle Scholar
  34. 34.
    Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu, Scr. Mater. 52, 989 (2005).CrossRefGoogle Scholar
  35. 35.
    J. Kachera, P. Eftink, B. Cui, and I.M. Robertson, Cur. Opin. Sol. Stat. Mater. Sci. 17, 227 (2014).CrossRefGoogle Scholar
  36. 36.
    S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Acta Mater. 55, 6843 (2007).CrossRefGoogle Scholar
  37. 37.
    I.S. Nikulin, N.V. Kamyshanchenko, T.B. Nikulicheva, M.V. Mishunin, and K.A. Vokhmyanina, Mater. Lett. 182, 253 (2016).CrossRefGoogle Scholar
  38. 38.
    A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Acta Mater. 59, 2437 (2011).CrossRefGoogle Scholar
  39. 39.
    Z.J. Wang, Q.J. Li, Y. Li, L.C. Huang, L. Lu, M. Dao, J. Li, E. Ma, S. Suresh, and Z.W. Shan, Nat. Commun. 8, 1108 (2017).CrossRefGoogle Scholar
  40. 40.
    M.I. Latypov, S. Shin, B.C. De Cooman, and H. SeopKim, Acta Mater. 108, 219 (2016).CrossRefGoogle Scholar
  41. 41.
    Z.Y. Liang, W. Huang, and M.X. Huang, Mater. Sci. Eng. A 628A, 84 (2015).CrossRefGoogle Scholar
  42. 42.
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128, 120 (2017).CrossRefGoogle Scholar
  43. 43.
    Z.Y. Liang, X. Wang, W. Huang, and M.X. Huang, Acta Mater. 88, 170 (2015).CrossRefGoogle Scholar
  44. 44.
    T.S. Byun, Acta Mater. 51, 3063 (2003).MathSciNetCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Material Laser Processing and ModificationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Mechanical Department, Faculty of Engineering at ShoubraBenha UniversityCairoEgypt
  4. 4.Key Laboratory for MicrostructuresShanghai UniversityShanghaiChina

Personalised recommendations