pp 1–7 | Cite as

Thermally Activated Slip in Rare Earth Containing Mg-Mn-Ce Alloy, ME10, Compared with Traditional Mg-Al-Zn Alloy, AZ31

  • Vikaas Bajikar
  • Jishnu J. BhattacharyyaEmail author
  • Nathan Peterson
  • Sean R. Agnew
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications


It is of interest to assess the thermally activated nature of the deformation mechanisms responsible for the anisotropic response of textured Mg alloys, especially in those alloys that do and do not contain rare earth elements. The repeated stress relaxation method in combination with elasto-viscoplastic self-consistent (EVPSC) polycrystal modeling is employed to determine the strain rate sensitivity and true activation volume of samples of textured, polycrystalline Mg alloys, ME10 and AZ31, loaded along different directions in both the hard-rolled (F) and annealed (O) tempers. The results of Haasen plot analyses suggest that a superposition of at least two key mechanisms is responsible for controlling the thermally activated motion of dislocation for both of the alloy types investigated. One has a lower activation volume (solute-dislocation interaction and/or cross-slip), while the other is the ever-present forest dislocation interaction.



The authors thank the United States National Science Foundation, Division of Materials Research, Metals and Metallic Nanostructures (NSF-DMR-MMN) program, Grant No. 1810197, overseen by program manager Dr. Lynnette Madsen, for their financial support.


  1. 1.
    U.F. Kocks, A.S. Argon, and M.F. Ashby, Thermodynamics and Kinetics of Slip, Progress in Materials Science, vol. 19, ed. B. Chalmers, J.W. Christ, and T.B. Massalsk (Oxford: Pergamon Press, 1975), pp. 1–288.Google Scholar
  2. 2.
    D. Caillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Pergamon Materials Series, Vol. 8 (Amsterdam: Elsevier, 2003).Google Scholar
  3. 3.
    H. Conrad and W.D. Robertson, Trans AIME 209, 503 (1957).Google Scholar
  4. 4.
    H. Conrad, L. Hays, G. Schoeck, and H. Wiedersich, Acta Metall. 9, 367 (1961).CrossRefGoogle Scholar
  5. 5.
    A. Couret and D. Caillard, Acta Metall. 33, 1447 (1985).CrossRefGoogle Scholar
  6. 6.
    A. Couret and D. Caillard, Acta Metall. 33, 1455 (1985).CrossRefGoogle Scholar
  7. 7.
    A. Ahmadieh, J. Mitchell, and J. Dorn, Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium (No. UCRL-11417 Rev. 2) (Berkeley: California University, Lawrence Radiation Lab, 1965), pp.1–34.Google Scholar
  8. 8.
    A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).CrossRefGoogle Scholar
  9. 9.
    A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1339 (1969).CrossRefGoogle Scholar
  10. 10.
    D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu, Curr. Sci. 39, 97 (1970).Google Scholar
  11. 11.
    P. Lukac and Z. Trojanová, Key Eng. Mater. 465, 101 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Trojanová, K. Máthis, P. Lukáč, G. Németh, and F. Chmelík, Mater. Chem. Phys. 130, 1146 (2011).CrossRefGoogle Scholar
  13. 13.
    P. Spätig, J. Bonneville, and J.-L. Martin, Mater. Sci. Eng. A 167, 73 (1993).CrossRefGoogle Scholar
  14. 14.
    J.C. Li, Can. J. Phys. 45, 493 (1967).CrossRefGoogle Scholar
  15. 15.
    T. Kruml, O. Coddet, and J.L. Martin, Acta Mater. 56, 333 (2008).CrossRefGoogle Scholar
  16. 16.
    A.H. Cottrell and R.J. Stokes, Proc. R. Soc. Lond. A 233, 17 (1955).CrossRefGoogle Scholar
  17. 17.
    J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H. El Kadiri, and S.R. Agnew, Int. J. Plast 81, 123 (2016).CrossRefGoogle Scholar
  18. 18.
    J.J. Bhattacharyya, S.R. Agnew, M.M. Lee, W.R. Whittington, and H. El Kadiri, Int. J. Plast 93, 46 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Jain and S.R. Agnew, Mater. Sci. Eng. A 462, 29 (2007).CrossRefGoogle Scholar
  20. 20.
    H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé, Int. J. Solids Struct. 47, 2905 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew, Mater. Sci. Eng. A 486, 545 (2008).CrossRefGoogle Scholar
  22. 22.
    H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang, J. Mech. Phys. Solids 58, 594 (2010).MathSciNetCrossRefGoogle Scholar
  23. 23.
    U.F. Kocks, C.N. Tomé, and H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge: Cambridge University Press, 2000).zbMATHGoogle Scholar
  24. 24.
    S.R. Agnew and Ö. Duygulu, Int. J. Plast 21, 1161 (2005).CrossRefGoogle Scholar
  25. 25.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).CrossRefGoogle Scholar
  26. 26.
    W.A. Curtin, Scr. Mater. 63, 917 (2010).CrossRefGoogle Scholar
  27. 27.
    R.A. Mulford, Acta Metall. 27, 1115 (1979).CrossRefGoogle Scholar
  28. 28.
    Z. Trojanová, P. Palček, P. Lukáč, and Z. Drozd, Magnes. Alloy. Solid Liq. States (2014), pp. 3–47.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Vikaas Bajikar
    • 1
  • Jishnu J. Bhattacharyya
    • 1
    Email author
  • Nathan Peterson
    • 1
  • Sean R. Agnew
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations