Advertisement

JOM

pp 1–9 | Cite as

Effect of TiN-Particles on Fracture of Press-Hardened Steel Sheets and Components

  • J. C. Pang
  • H. L. Yi
  • Q. Lu
  • C. M. Enloe
  • J. F. WangEmail author
Advanced High-Strength Steels for Automobiles
  • 31 Downloads

Abstract

It is known that large TiN particles deteriorate the toughness of high-strength steels. The toughness of press-hardened steel (PHS) sheets with full-martensite microstructure for safety critical components of a car body has, however, seldom been studied. Consequently, the effect of TiN particles on either the toughness of PHS sheets or the performance of hot-stamped components have not been investigated. In this research, the size and distribution of TiN particles are quantitatively analyzed for two 22MnB5 PHS sheets containing nitrogen of 29 ppm and 44 ppm in mass. Higher populations of coarse TiN particles have a negligible effect on standard tensile properties, but significantly reduce impact toughness by Charpy V-notch impact tests. Hot-formed components with smaller fractions of TiN particles show greater fracture resistance by a three-point bending test.

Notes

Acknowledgements

The authors would like to thank Dr. Yonggang Liu and his team from Ma’Steel Technical Center for conducting the quantitative analysis of TiN inclusions and performing the stacked Charpy V-Notch impact tests.

References

  1. 1.
    T. Taylor and A. Clough, Mater. Sci. Technol. 34, 809 (2018).CrossRefGoogle Scholar
  2. 2.
    K. Mori, P.F. Bariani, B.A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, and J. Yanagimoto, CIRP Ann Manuf. Technol. 66, 755 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Karbasian and A.E. Tekkaya, J. Mater. Process. Technol. 210, 2103 (2010).CrossRefGoogle Scholar
  4. 4.
    C.J. Min, J. Park, S.S. Sohn, S. Kim, J. Oh, and S. Lee, Metall. Mater. Trans. A 707, 65 (2017).Google Scholar
  5. 5.
    H. Dong and X. Sun, Curr. Opin. Solid State Mater. Sci. 9, 269 (2005).CrossRefGoogle Scholar
  6. 6.
    D.T. Llewellyn and W.T. Cook, Metal Sci. J. 1, 517 (1974).Google Scholar
  7. 7.
    K.A. Taylor and S.S. Hansen, Metall. Trans. A 21, 1697 (1990).CrossRefGoogle Scholar
  8. 8.
    Y. Shen and S.S. Hansen, Metall. Mater. Trans. A 28, 2027 (1997).CrossRefGoogle Scholar
  9. 9.
    J. Kunze, B. Beyer, S. Oswald, and W. Gruner, Steel Res. 66, 161 (1995).CrossRefGoogle Scholar
  10. 10.
    D.P. Fairchild, D.G. Howden, and W.A.T. Clark, Metall. Mater. Trans. A 31, 641 (2000).CrossRefGoogle Scholar
  11. 11.
    D.P. Fairchild, D.G. Howden, and W.A.T. Clark, Metall. Mater. Trans. A 31, 653 (2000).CrossRefGoogle Scholar
  12. 12.
    J.Y. Li and W.Y. Zhang, ISIJ Int. 29, 158 (1989).CrossRefGoogle Scholar
  13. 13.
    M.J. Balart, C.L. Davis, and M. Strangwood, Metall. Mater. Trans. A 284, 1 (2000).Google Scholar
  14. 14.
    W. Yan, Y.Y. Shan, and K. Yang, Metall. Mater. Trans. A 38, 1211 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Wang, C.M. Enloe, J.P. Singh, and C.D. Horvath, SAE Int. J. Mater. Manuf. 9, 488 (2016).Google Scholar
  16. 16.
    H. Wada and R.D. Pehlke, Metall. Trans. B 16, 815 (1985).CrossRefGoogle Scholar
  17. 17.
    L.J. Cuddy and J.C. Raley, Metall. Trans. A 14, 1989 (1983).CrossRefGoogle Scholar
  18. 18.
    T. Shuji and T. Keisuke, Eng. Fract. Mech. 11, 231 (1979).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.China Science LabGeneral Motors Global Research and DevelopmentShanghaiPeople’s Republic of China
  2. 2.The State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  3. 3.Body Structures and Closures Materials EngineeringGeneral Motors Global Product IntegrityWarrenUSA

Personalised recommendations