Advertisement

JOM

pp 1–8 | Cite as

Effect of Aging Treatment on Tensile Behaviors of Cast Mg-9Gd-4Y-0.5Zr Alloy

  • J. L. Li
  • D. Wu
  • R. S. Chen
  • E. H. Han
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • 13 Downloads

Abstract

Aging treatment is a significant method for improving the tensile properties of cast Mg-Gd-Y alloy. In this article, tension tests were conducted on the Mg-9Gd-4Y-0.5Zr (wt.%) alloy after various artificial aging treatments to examine the influence of aging treatment on mechanical behaviors, especially the work-hardening behavior, which is critical for both strength and ductility. It is interesting that for the three types of samples peak-aged and over-aged at 200°C and peak-aged at 225°C, the variation of yield strength was small, whereas the ductility increased from 0.68% and 1.31% of the former two to 2.24% of the last one. It was considered that precipitate spacing might be the dominant influence factor for the ductility by influencing the dynamic recovery in stage III of work hardening. Moreover, the origin of the high work-hardening rate, responsible for the high strength of aged alloys, was also discussed.

Notes

Acknowledgements

This work was funded by the National Science and Technology Major Project 2017ZX04014001, the National Key Research and Development Program of China through Project No. 2016YFB0301104, the National Natural Science Foundation of China (NSFC) through Project Nos. 51531002, 51301173, 51601193 and 51701218, and the National Basic Research Program of China (973 Program) through Project No. 2013CB632202.

References

  1. 1.
    B. Smola, I. Stulıková, F. Von Buch, and B. Mordike, Mater. Sci. Eng., A 324, 113 (2002).CrossRefGoogle Scholar
  2. 2.
    T. Honma, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 55, 4137 (2007).CrossRefGoogle Scholar
  3. 3.
    S. He, X. Zeng, L. Peng, X. Gao, J. Nie, and W. Ding, J. Alloys Compd. 427, 316 (2007).CrossRefGoogle Scholar
  4. 4.
    S.M. He, X.Q. Zeng, L.M. Peng, X.Q. Gao, J.F. Nie, and W.J. Ding, J. Alloys Compd. 421, 309 (2006).CrossRefGoogle Scholar
  5. 5.
    Q. Peng, X. Hou, L. Wang, Y. Wu, Z. Cao, and L. Wang, Mater. Des. 30, 292 (2009).CrossRefGoogle Scholar
  6. 6.
    I. Anyanwu, N.B.S.P. Anthony, S. Kamado, and Y. Kojima, Mater. Trans. 42, 1212 (2001).CrossRefGoogle Scholar
  7. 7.
    J.L. Li, R.S. Chen, and W. Ke, Trans. Nonferrous Met. Soc. China 21, 761 (2011).CrossRefGoogle Scholar
  8. 8.
    I. Stulíková, B. Smola, F. Von Buch, and B. Mordike, MaterWiss WerkstTech 32, 20 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Zheng, J. Dong, X. Zeng, and W. Ding, Mater. Sci. Eng., A 489, 44 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Wu and W. Curtin, Nature 526, 62 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Liang, D. Guan, L. Chen, Z. Gao, H. Tang, X. Tong, and R. Xiao, Mater. Des. 32, 361 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Robson, N. Stanford, and M. Barnett, Acta Mater. 59, 1945 (2011).CrossRefGoogle Scholar
  13. 13.
    J.F. Nie, Scr. Mater. 48, 1009 (2003).CrossRefGoogle Scholar
  14. 14.
    L. Gao, R. Chen, and E. Han, J. Alloys Compd. 481, 379 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Hansen, Scr. Mater. 51, 801 (2004).CrossRefGoogle Scholar
  16. 16.
    L. Gao, R. Chen, and E. Han, J. Mater. Sci. 44, 4443 (2009).CrossRefGoogle Scholar
  17. 17.
    L.M. Cheng, W.J. Poole, J.D. Embury, and D.J. Lloyd, Metall. Mater. Trans. A 34, 2473 (2003).CrossRefGoogle Scholar
  18. 18.
    L. Brown and W. Stobbs, Philos. Mag. 23, 1201 (1971).CrossRefGoogle Scholar
  19. 19.
    W. Stobbs, Philos. Mag. 27, 1073 (1973).CrossRefGoogle Scholar
  20. 20.
    L. Brown and W. Stobbs, Philos. Mag. 34, 351 (1976).CrossRefGoogle Scholar
  21. 21.
    L. Brown and W. Stobbs, Philos. Mag. 23, 1185 (1971).CrossRefGoogle Scholar
  22. 22.
    J. Atkinson, L. Brown, and W. Stobbs, Philos. Mag. 30, 1247 (1974).CrossRefGoogle Scholar
  23. 23.
    J.L. Li, N. Zhang, X.X. Wang, D. Wu, and R.S. Chen, Acta Metall. Sin. (Engl. Lett.) 31, 189 (2018).CrossRefGoogle Scholar
  24. 24.
    B. Choudhary, J. Christopher, and E.I. Samuel, Mater. Sci. Technol. 28, 644 (2012).CrossRefGoogle Scholar
  25. 25.
    U. Kocks and H. Mecking, Prog. Mater Sci. 48, 171 (2003).CrossRefGoogle Scholar
  26. 26.
    H. Mecking and U. Kocks, Acta Metall. 29, 1865 (1981).CrossRefGoogle Scholar
  27. 27.
    W. Poole, J. Embury, and D. Lloyd, Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, ed. R. Lumley (Cambridge: Woodhead Publishing Limited, 2011), p. 307.CrossRefGoogle Scholar
  28. 28.
    L. Brown and D. Clarke, Acta Metall. 23, 821 (1975).CrossRefGoogle Scholar
  29. 29.
    H. Proudhon, W.J. Poole, X. Wang, and Y. Brechet, Philos. Mag. 88, 621 (2008).CrossRefGoogle Scholar
  30. 30.
    L. Brown, Scripta Metall. 11, 127 (1977).CrossRefGoogle Scholar
  31. 31.
    G. Moan and J. Embury, Acta Metall. 27, 903 (1979).CrossRefGoogle Scholar
  32. 32.
    J.A. del Valle, F. Carreño, and O.A. Ruano, Acta Mater. 54, 4247 (2006).CrossRefGoogle Scholar
  33. 33.
    G.X. Sun, Y. Jiang, X.R. Zhang, S.C. Sun, Z.H. Jiang, W.Q. Wang, and J.S. Lian, Chin. Phys. B 26, 096104 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Deschamps, Y. Bréchet, C.J. Necker, S. Saimoto, and J.D. Embury, Mater. Sci. Eng., A 207, 143 (1996).CrossRefGoogle Scholar
  35. 35.
    S.M. He, Diss. Ph. D. Thesis School of Materials Science and Engineering, Shanghai Jiao Tong University, 2007 (in Chinese).Google Scholar
  36. 36.
    R. Liu, D.L. Yin, and J.T. Wang, Magnesium Technology 2012 (Cham: Springer, 2016), pp. 555–559.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.The Group of Magnesium Alloys and Their Applications, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations