Advertisement

JOM

pp 1–9 | Cite as

Effects of Trace Carbon Contents on Lattice Distortion and Nano-Copper Phase Precipitation in Metal Injection-Molded 17-4PH Stainless Steel

  • Jia Lou
  • Hao He
  • Yimin Li
  • Hao Zhang
  • Zhijie Fang
  • Xiansheng Wei
Effective Production and Recycling of Powder Materials

Abstract

By adding trace amounts of graphite to metal injection-molded 17-4PH stainless steel, the effects of carbon content on the lattice distortion, nano-copper phase precipitation, and mechanical properties were studied. As the carbon content increased, the distortion degree of martensite increased. Differential scanning calorimetry results showed that the martensitic phase-transformation starting temperature decreased as the carbon content increased. Moreover, the average size of nano-copper-rich precipitates gradually decreased with the carbon content. As a result, the tensile strength and hardness of the samples increased while the elongation correspondingly decreased. Aging promoted greater nano-copper precipitate sizes and slightly improved mechanical properties.

Notes

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (Grant No. 51804271), Hunan Provincial Natural Science Foundation (Grant No. 2018JJ3507) and the Guangxi Science and Technology Plan Project (Grant No. AD16380019).

References

  1. 1.
    U.M. Attia and J.R. Alcock, J. Micromech. Microeng. 21, 43001 (2011).CrossRefGoogle Scholar
  2. 2.
    G.Y. Wang, H. He, Y.M. Li, and J.G. Zhang, Chin. J. Nonferrous Met. 21, 1847 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Lou, Y.M. Li, H. He, and L.J. Li, Powder Metall. 53, 112 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Schade, P. Stears, A. Lawley, and R.D. Doherty, Int. J. Powder Metall. 51, 43 (2007).Google Scholar
  5. 5.
    Y.M. Li, B.Y. Huang, X.H. Qu, S.Q. Liang, and G.H. Qiu, Rare Metal. Mat. Eng. 25, 1 (1996).Google Scholar
  6. 6.
    K.R. Enneti, S.J. Park, R.M. German, and S.V. Atre, Mater. Manuf. Process. 27, 113 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Lou, H. He, Y.M. Li, C.Q. Zhu, Z.Y. Chen, and C. Liu, Mater. Des. 106, 37 (2016).CrossRefGoogle Scholar
  8. 8.
    J.A. Lewis, Mater. Res. 27, 147 (1997).Google Scholar
  9. 9.
    J.M. Torralba, Handbook of Metal Injection Molding (Philadelphia, PA: Woodhead Publishing Limited, 2012), p. 397.Google Scholar
  10. 10.
    B. Almangour and J.M. Yang, Mater. Des. 110, 914 (2016).CrossRefGoogle Scholar
  11. 11.
    T. Baba, H. Miura, T. Honda, and Y. Tokuyama, J. Jpn. Soc. Powder Metall. 42, 1119 (1995).CrossRefGoogle Scholar
  12. 12.
    Y. Wu, R.M. German, D. Blaine, B. Marx, and C. Schlaefer, J. Mater. Sci. 37, 3573 (2002).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, H. He, Y.M. Li, C. Liu, L.M. Man, and Y.H. Hu, Chin. J. Nonferrous Met. 25, 945 (2015).Google Scholar
  14. 14.
    J. Wang, H. Zou, C. Li, and B.L. Shen, Mater. Charact. 57, 274 (2006).CrossRefGoogle Scholar
  15. 15.
    H.R.H. Bajguirani, Mat. Sci. Eng. A 338, 142 (2002).CrossRefGoogle Scholar
  16. 16.
    Z. Chen, G. Zhou, and Z. Chen, Mat. Sci. Eng. A 534, 536 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Chipman, Mat. Sci. Eng. B 3, 55 (1972).Google Scholar
  18. 18.
    G.V.K. Jumov, Mat. Sci. Eng. A 7, 999 (1976).Google Scholar
  19. 19.
    C.S. Roberts, Trans. Am. Inst. Metall. Eng. 197, 203 (1953).Google Scholar
  20. 20.
    G.V. Kurdjumov and A.G. Khachaturyan, Scripta Metal. 23, 1077 (1975).Google Scholar
  21. 21.
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo, Scripta Mater. 110, 96 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Litwinchuk, F.X. Kayser, H.H. Baker, and A. Henkin, J. Mater. Sci. 11, 1200 (1976).CrossRefGoogle Scholar
  23. 23.
    D.E. Kaputkin, Mater. Sci. Eng. A 438, 207 (2006).CrossRefGoogle Scholar
  24. 24.
    W. Steven and A.G. Haynes, J. Iron Steel Inst. 183, 349 (1956).Google Scholar
  25. 25.
    U.K. Viswanathan, P.K.K. Nayar, and R. Krishnan, Mater. Sci. Technol. Lond. 5, 346 (2013).CrossRefGoogle Scholar
  26. 26.
    D.H. Stjohn, A. Prasad, M.A. Eason, and M. Qian, Metall. Mater. Trans. A 46A, 4868 (2015).CrossRefGoogle Scholar
  27. 27.
    Y.C. Lo, M.E. thesis (National Central University, Tao Yuan 2014).Google Scholar
  28. 28.
    J.B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park, Acta Mater. 61, 558 (2013).CrossRefGoogle Scholar
  29. 29.
    H. Mirzadeh and A. Najafizadeh, Mater. Chem. Phys. 116, 119 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Research Centre for Materials Science and EngineeringGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations