Advertisement

JOM

pp 1–8 | Cite as

Effect of Post-heat Treatment on the Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing

  • Amit ZakayEmail author
  • Eli Aghion
Technical Article
  • 35 Downloads

Abstract

Additive manufacturing processes are becoming attractive technologies for producing complex components in relatively a short time and at reasonable cost. The present study aims to evaluate the effect of post-heat treatment on the corrosion performance of AlSi10Mg alloy produced by selective laser melting (SLM). Heat treatment up to 400°C for 2 h was tested. Microstructure evaluation was carried out using optical and scanning electron microscopy, along with x-ray diffraction assessment and photoelectron spectroscopy analysis. Corrosion performance was studied by salt spray testing, potentiodynamic polarization and electrochemical impedance spectroscopy for general corrosion assessment, while slow strain rate testing and low cycle corrosion fatigue were employed for stress corrosion examination. The obtained results indicated that relatively improved corrosion performance was achieved by heat treatment at 200–300°C. This was mainly attributed to the preservation of the fine Si net embedded in the α-Al matrix that was obtained during the SLM process and the adequate residual stress relief conditions.

Notes

Acknowledgements

The authors thank Sharon Tuvia, Ltd. for preparation of 3D-printed specimens by SLM, and A. Leon and V. Pearl from Ben-Gurion University for assistance with the experimental work.

Funding

Funding was provided by Ben-Gurion University of the Negev.

References

  1. 1.
    D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Paola, S. Biamino, D. Ugues, M. Pavese, and P. Fino, InTech, 2014.  https://doi.org/10.5772/58534.
  2. 2.
    W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. Williams, C. Wang, Y. Shin, S. Zhang, and P. Zavattieri, Comput. Aided Des. 69, 65 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Murr, E. Martinez, K. Amato, S. Gaytan, J. Hernandez, D. Ramirez, P. Shindo, F. Medina, and R. Wicker, J. Mater. Sci. Technol. 28, 42 (2012).Google Scholar
  4. 4.
    N. Aboulkhair, N. Everitt, I. Ashcroft, and C. Tuck, Addit. Manuf. 1, 77 (2014).CrossRefGoogle Scholar
  5. 5.
    EOS GmbH—Electro optical systems, material data sheets: EOS aluminum AlSi10Mg for EOS M280 (2014). http://www.eos.info/material-m. Accessed May 2014.
  6. 6.
    J.G. Kaufman and E.L. Rooy, Aluminium Alloy Castings: Properties, Processes and Applications (Materials Park: ASM International, 2004), pp. 1–7.Google Scholar
  7. 7.
    J.R. Davis, Metals Handbook Desk Edition, 2nd ed. (Materials Park: ASM International, 1998), pp. 489–496.Google Scholar
  8. 8.
    M.S. Salleh, M.Z. Omar, and J. Syarif, J. Alloys. Compd. 621, 121 (2015).CrossRefGoogle Scholar
  9. 9.
    E. Aghion and I. Guinguis, Adv. Eng. Mater. 11, 920 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Leon, A. Shirizly, and E. Aghion, Metals 6, 148 (2016).CrossRefGoogle Scholar
  11. 11.
    J.R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, Materials Park, 1999), pp. 30–49, 582–609Google Scholar
  12. 12.
    M. Henthorne, Corrosion 72, 1488 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Corros. Sci. 50, 1841 (2008).CrossRefGoogle Scholar
  14. 14.
    F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi, Materials 10, 76 (2017).CrossRefGoogle Scholar
  15. 15.
    B.A. Fulcher, D.K. Leigh, and T.J. Watt, Fundamentals of Aluminium Metallurgy: Recent Advances (Cambridge: Woodhead Publishing, 2018), pp. 404–419.Google Scholar
  16. 16.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, and P. Calignano, Electrochim. Acta 206, 346 (2016).CrossRefGoogle Scholar
  17. 17.
    R.S. Rajamure, H.D. Vora, S.G. Srinivasan, and N.B. Dahotre, Appl. Surf. Sci. 328, 205 (2015).CrossRefGoogle Scholar
  18. 18.
    D. Battocchi, A.M. Simões, D.E. Tallman, and G.P. Bierwagen, Corro. Sci. 48, 2226 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino, Acta 20, 191 (2016).Google Scholar
  20. 20.
    Y. Unigovski, E. Gutman, Y. Shubov, I. Lifshitz, S. Yuav, G. Lothongkum, in European Corrosion Congress 2010EUROCORR 2010, vol. 4 (2010).Google Scholar
  21. 21.
    O. Uzun, T. Karaaslan, M. Gogebakan, and M. Keskin, J. Alloys. Compd. 376, 149 (2004).CrossRefGoogle Scholar
  22. 22.
    C. Suryanarayana, M.G. Norton, Practical Aspects of X-ray Diffraction, X-ray diffraction: A Practical Approach (Plenum Press, New York, 1998), pp. 63–94, 224.Google Scholar
  23. 23.
    Y. Jun-hua, H. Shuai, Q. Ke-qiang, and R. Ying-Lei, Magnesium Technology 2012, ed. S.N. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, and N. Hort (Cham: Springer, 2012), pp. 221–225.Google Scholar
  24. 24.
    O. Hakimi and E. Aghion, Adv. Eng. Mater. 16, 364 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Qian, D. Li, S.B. Liu, and S.L. Gong, Corro. Sci. 52, 3554 (2010).CrossRefGoogle Scholar
  26. 26.
    R.T. Foley, Corrosion 42, 277 (1986).CrossRefGoogle Scholar
  27. 27.
    A. Leon and E. Aghion, Mater. Charact. 131, 188 (2017).CrossRefGoogle Scholar
  28. 28.
    H.E. Boyer, Atlas of Fatigue Curves (Materials Park: ASM International, 1998), p. 354.Google Scholar
  29. 29.
    N.E. Uzan, R. Shneck, O. Yeheskel, and N. Frage, Mater. Sci. Eng. 704, 229 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeershebaIsrael

Personalised recommendations