Advertisement

JOM

pp 1–7 | Cite as

Spatial Strain Sensing Using Embedded Fiber Optics

  • Adam HehrEmail author
  • Mark Norfolk
  • John Sheridan
  • Matthew Davis
  • William Leser
  • Patrick Leser
  • John A. Newman
Additive Manufacturing of Composites and Complex Materials
  • 16 Downloads

Abstract

Ultrasonic additive manufacturing, a three-dimensional metal printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low-temperature attribute of the process enables integration of temperature-sensitive components, such as fiber optic strain sensors, directly into metal structures for load and health monitoring applications. In this study, a high-definition fiber optic strain sensor was embedded into an aluminum alloy, 6061-T6, bracket for fatigue testing. The fiber optic system allowed mapping of the strain along the length of the fiber with a spatial resolution near 1 mm, and the embedded fiber exhibited correlation with surface strains measured by digital image correlation. Finite element modeling was carried out to rationalize and compare the measured strain profile’s character and magnitude. After discussing these results, a future outlook on the technology and its applications is described.

Notes

Acknowledgements

The authors would like to acknowledge financial support from NASA’s SBIR Office, NNX16CL33C. The authors are grateful for the support of NASA’s Convergent Aeronautics Solutions (CAS) Program Digital Twin Project.

References

  1. 1.
    E. Tuegel, A. Ingraffea, T. Eason and S. Spottswood, Int. J. Aerosp. Eng. (2011).Google Scholar
  2. 2.
    G.W. Hunter, D.E. Berger, J.D. Lekki, R.W. Mah, D.F. Perey, S.R. Schuet, D.L. Simon and S.W. Smith, Report No. 217825, NASA, Cleveland, OH (2013).Google Scholar
  3. 3.
    E.H. Glaessgen and D. Stargel, Proc.—AIAA/ASME/SAE Struct., Struct. Dyn., Mater. Conf. (2012).Google Scholar
  4. 4.
    M. Grieves and J. Vickers, Transdisciplinary Perspective on Complex Systems, 1st ed. (Springer, 2017), pp. 85–113.Google Scholar
  5. 5.
    C.J. Parris, J. Laflen, M. Grabb and D. Kalitan, The future for industrial services: the digital twin, https://www.infosys.com/insights/digital-future/Pages/future-industrial-digital.aspx. Accessed 22 Aug 2017.
  6. 6.
    Siemens, The digital twin, https://www.siemens.com/customer-magazine/en/home/industry.html. Accessed 2 Oct 2017.
  7. 7.
    B. Marr, Forbes (2017).Google Scholar
  8. 8.
    D. Huston, Structural Sensing, Health Monitoring, and Performance Evaluation, 1st ed. (Boca Raton: CRC Press, 2011), pp. 5–15.Google Scholar
  9. 9.
    R. Measures, Prog. Aeronut. Sci. 26, 289 (1989).CrossRefGoogle Scholar
  10. 10.
    K. Kuang and W. Cantwell, Appl. Mech. Rev. 56, 493 (2003).CrossRefGoogle Scholar
  11. 11.
    N. Saheb and S. Mekid, Materials 8, 7938 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Mekid, A. Butt, and K. Qureshi, Opt. Fiber Technol. 36, 334 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Havermann, J. Mathew, W.N. MacPherson, D.P. Hand and R.R. Maier, Proc. SPIE (2015).Google Scholar
  14. 14.
    D. Havermann, J. Mathew, W. MacPherson, R. Maier, and D. Hand, J. Lightwave Technol. 33, 2474 (2015).CrossRefGoogle Scholar
  15. 15.
    C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar and I. Bennion, Meas. Sci. Technol. 20 (2009).Google Scholar
  16. 16.
    J. Schomer, A. Hehr and M. Dapino, Proc. SPIE (2016).Google Scholar
  17. 17.
    A. Hehr, M. Norfolk, J. Wenning, J. Sheridan, P. Leser, P. Leser, and J. Newman, JOM 70, 315 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Mekid and H. Daraghma, J. Mater. Process. Technol. 252, 673 (2018).CrossRefGoogle Scholar
  19. 19.
    D. White, Adv. Mater. Process. 161, 64 (2003).Google Scholar
  20. 20.
    K. Graff, J. Devine, J. Keltos, N. Zhou and W. Roth, AWS Welding Handbook (2001), p. 263.Google Scholar
  21. 21.
    M. Sriraman, M. Gonser, H. Fujii, S. Babu, and M. Bloss, J. Mater. Process. Technol. 211, 1650 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Sietins, J. Gillespie, and S. Advani, J. Mater. Res. 29, 1970 (2014).CrossRefGoogle Scholar
  23. 23.
    B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).CrossRefGoogle Scholar
  24. 24.
    G. Bomarito, J. Hochhalter, T. Ruggles, and A. Cannon, Optics Lasers Eng. 91, 73 (2017).CrossRefGoogle Scholar
  25. 25.
    G. Bomarito, J. Hochhalter and T. Ruggles, Exp. Mech. 1 (2017).Google Scholar
  26. 26.
    J. Warner, G. Bomarito, J. Hochhalter, W. Leser, P. Leser and J. Newman, Int. J. Prognost. Health Manag. 8 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Fabrisonic LLCColumbusUSA
  2. 2.Sheridan Solutions LLCSalineUSA
  3. 3.Luna InnovationsBlacksburgUSA
  4. 4.NASA Langley Research CenterHamptonUSA

Personalised recommendations