Advertisement

JOM

pp 1–7 | Cite as

Novel Alkaline Method for the Preparation of Low-Chromium Magnesia

  • Chao Wang
  • Hui Xu
  • Weiping LiuEmail author
  • Pengcheng Han
  • Xiyun Yang
  • Xuming WangEmail author
Design, Development, Manufacturing, and Applications of Refractory Metals and Materials
  • 66 Downloads

Abstract

The typical method for the preparation of chromium-magnesia is by energy-consuming grinding, but the pollution of Cr6+ ions is a problem. However, the chromium-magnesia refractory is still irreplaceable due to its outstanding performance. In this regard, low-chromium magnesia was prepared by the alkaline chromium precipitation method from cheap light-burned magnesia. The impurities in the light-burned magnesia was removed in order to avoid the formation of Cr6+. The chromium was precipitated directly on the light-burned magnesia surface without the grinding process. The low-chromium magnesia was obtained after the calcination. The reaction temperature, solid content, reaction time and stirring speed were examined and low-chromium magnesia with Cr3+ 0.4%, MgO 98.5% was obtained. The effect of temperature on the surface tomography of low-chromium magnesia was also discussed. The present novel alkaline method should be a promising way for the preparation of low-chromium magnesia.

Notes

Acknowledgements

Funding for this research by National Natural Science Foundation of China (51574286) and China Postdoctoral Science Foundation (2016M592448) are gratefully acknowledged.

References

  1. 1.
    D.Y. Kim, S.Y. Yoo, S.M. Kim, C.S. Ha, and J.M. Park, Am. Ceram. Soc. Bull. 84, 9201 (2005).Google Scholar
  2. 2.
    J.P. Bennett, K.S. Kwong, C.P. Powell, H. Thomas, and A.V. Petty Jr, In 20th Annual Conference on Fossil Energy Materials, (Knoxville, TN, US, 2007), pp. 200–206.Google Scholar
  3. 3.
    J. Li, H. Zhao, P. Zhao, J. Cui, S. Mu, and Y. Lv, Ceram. Int. 42, 18579 (2016).  https://doi.org/10.1016/j.ceramint.2016.08.200.CrossRefGoogle Scholar
  4. 4.
    H. Li, J. Liu, H. Feng, and L. Zhang, China’s Refract. 4, 2 (2014).  https://doi.org/10.3969/j.issn.1004-4493.2014.04.001 CrossRefGoogle Scholar
  5. 5.
    B. Sahin and C. Aksel, J. Eur. Ceram. Soc. 32, 49 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2011.07.024.CrossRefGoogle Scholar
  6. 6.
    S. Ritwik, K.D. Samir, and B. Goutam, J. Eur. Ceram. Soc. 22, 1243 (2002).  https://doi.org/10.1016/s0955-2219(01)00446-0.CrossRefGoogle Scholar
  7. 7.
    N.N. Tupotilov, V.V. Ostrikov, and A.Y. Kornev, Chem. Technol. Fuels Oils 44, 29 (2008).  https://doi.org/10.1007/s10553-008-0012-7.CrossRefGoogle Scholar
  8. 8.
    S. Fellahi, N. Chikhi, and M. Bakar, J. Appl. Polym. Sci. 82, 861 (2001).  https://doi.org/10.1002/app.1918.CrossRefGoogle Scholar
  9. 9.
  10. 10.
    X. Liu, Y. Feng, H. Li, P. Zhang, and P. Wang, J. Cent. South Univ. (Sci. Technol.) 42, 3912 (2011).Google Scholar
  11. 11.
    H. Xu, Y. Cai, X. Shi, and G. Pi, J. Nat. Sci. Hunan Norm. Univ. 29, 52 (2006).  https://doi.org/10.3969/j.issn.1000-2537.2006.01.013.CrossRefGoogle Scholar
  12. 12.
    H. Xu, Y. Cai, B. Chen, and Y. Su, J. Cent. South Univ. 37, 698 (2006).  https://doi.org/10.3969/j.issn.1672-7207.2006.04.014.CrossRefGoogle Scholar
  13. 13.
    H. Xu, W. Liu, X. Yang, X. Shi, S. Chen, and L. Yu, J. Cent. South Univ. (Sci. Technol.) 42, 2204 (2011).Google Scholar
  14. 14.
    W. Liu, H.Xu, X. Shi, and X. Yang, In XVII Balkan Mineral Processing Congress (BMPC-2017) (Antalya, Turkey, 2017), pp. 513–521.Google Scholar
  15. 15.
    W. Liu, H. Xu, X. Yang, X. Chang, and Y. Chen, J. Cent. South Univ. 19, 2751 (2012).  https://doi.org/10.1007/s11771-012-1337-2.CrossRefGoogle Scholar
  16. 16.
    H.R. Zargar, C. Oprea, G. Oprea, and T. Troczynski, Ceram. Int. 38, 6235 (2012).  https://doi.org/10.1016/j.ceramint.2012.04.077.CrossRefGoogle Scholar
  17. 17.
    J.W. Nelson and I.B. Cutler, J. Am. Ceram. Soc. 41, 406 (1958).  https://doi.org/10.1111/j.1151-2916.1958.tb13512.x.CrossRefGoogle Scholar
  18. 18.
    X. Shi, F. Wang, and S. Xiong, Nonferrous Met. Sci. Eng. 3, 54 (2016).  https://doi.org/10.13264/j.cnki.ysjskx.2016.03.010.CrossRefGoogle Scholar
  19. 19.
    Y. Deng, H. Wang, and H. Zhao, Ceram. Int. 34, 573 (2008).  https://doi.org/10.1016/j.ceramint.2006.12.002.CrossRefGoogle Scholar
  20. 20.
    W. Ren, B. Xue, C. Lu, Z. Zhang, Y. Zhang, and L. Jiang, J. Clean. Prod. 135, 214 (2016).  https://doi.org/10.1016/j.jclepro.2016.06.118.CrossRefGoogle Scholar
  21. 21.
    H. Xu, W. Liu, R. Dong, X. Yang, X. Shi, and N. Zhao, Nonferrous Met. (Extr. Metall.) 20 (2011).  https://doi.org/10.3969/j.issn.1007-7545.2011.01.006.
  22. 22.
    Y. Liang, Y. Yang, and W. Mao, Rock Miner. Anal. 26, 73 (2007).  https://doi.org/10.3969/j.issn.0254-5357.2007.01.018.CrossRefGoogle Scholar
  23. 23.
    B. Müller, ChemEQL V3.2, (Duebendorf: Swiss Federal Institute for Environmental Science and Technology, 1996), pp. 1–6.Google Scholar
  24. 24.
    Y.C. Akira, In Supplement of China’s RefractoriesProceeding of the Fifth International Symposium on Refractories (2007), pp. 28–30.Google Scholar
  25. 25.
    W. Liu, H. Xu, X. Shi, X. Yang, Y. Chen, J. Cheng, and G. Li, Chin. J. Nonferrous Met. 22, 2656 (2012).Google Scholar
  26. 26.
    W. Liu, H. Xu, J. Cheng, G. Li, X. Shi, and X. Yang, Mater. Rev. 26, 313 (2012).  https://doi.org/10.3969/j.issn.1005-023X.2012.z1.084.CrossRefGoogle Scholar
  27. 27.
    H. Xu, J. Cheng, G. Li, X. Yang, and W. Liu, Mater. Rev. 27, 104 (2013).  https://doi.org/10.3969/j.issn.1005-023X.2013.16.028.CrossRefGoogle Scholar
  28. 28.
    T.A. Clancy, University of Missouri-Rolla, 4 (1968).Google Scholar
  29. 29.
    Y. Sun, H. Qian, J. Liu, and B. Yu, Non Met. Mines 28, 54 (2005).  https://doi.org/10.3969/j.issn.1000-8098.2005.04.020.CrossRefGoogle Scholar
  30. 30.
    D.J. Bellamy and P.H. Clarke, Nature 218, 1180 (1968).  https://doi.org/10.1038/2181180a0.CrossRefGoogle Scholar
  31. 31.
    D. Hou and H. Li, J. Salt Lake Res. 16, 45 (2008).Google Scholar
  32. 32.
    K.P. Ananthapadmanabhan and P. Somasundaran, Colloids Surf. 13, 151 (1985).  https://doi.org/10.1016/0166-6622(85)80014-7.CrossRefGoogle Scholar
  33. 33.
    D.P. Rai, B.M. Sass, and D.A. Moore, Inorg. Chem. 26, 345 (1987).  https://doi.org/10.1021/ic00250a002.CrossRefGoogle Scholar
  34. 34.
    L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, Acta Mater. 122, 11 (2017).  https://doi.org/10.1016/j.actamat.2016.09.032.CrossRefGoogle Scholar
  35. 35.
    R.S. Mishra, N. Kumar, and M. Komarasamy, Mater. Sci. Technol. 31, 1259 (2015).  https://doi.org/10.1179/1743284715Y.0000000050.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Metallurgical Engineering, College of Mines and Earth SciencesUniversity of UtahSalt Lake CityUSA

Personalised recommendations