Performance Analysis of Silver-Based Graphene Nanocomposite Bulk Materials Obtained by Spark Plasma Sintering
- 23 Downloads
Abstract
Silver-based bulk materials containing Ag/reduced graphene oxide (Ag/rGO) nanocomposite were prepared via a two-step procedure. First, a one-pot procedure was used to form Ag/rGO nanocomposites from AgNO3 and GO using hydrazine as a reductant. Then, Ag/rGO nanocomposites with various graphene contents were mixed with silver nanopowder and consolidated using spark plasma sintering. The hardness of the bulk material increased to 70 HV when the graphene content was increased to 2.5 wt.%. The bulk densification varied from 87.2% to 96% and was highest at graphene content of 2.5 wt.%. The conductivity (43.00–53.73 MS/m) was highest at 0.7 wt.% graphene content. The variation of the intensity and conductivity is mainly related to the formation of Ag-C bonds, while the variation of the density is mainly related to the sintering process.
Notes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 51201094). The authors also thank Ningbo Pioneer Electronic Technology Co. Ltd. of China for equipment support.
References
- 1.I.W. Frank, D.M. Tanenbaum, A.M. Van der Zande, and P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).CrossRefGoogle Scholar
- 2.C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 32, 385 (2008).CrossRefGoogle Scholar
- 3.K.M.F. Shahil and A.A. Balandin, Solid State Commun. 152, 1331 (2012).CrossRefGoogle Scholar
- 4.Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, J. Mater. Chem. 20, 743 (2010).CrossRefGoogle Scholar
- 5.D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.H. Min, and K. Kostarelos, Adv. Mater. 25, 2258 (2013).CrossRefGoogle Scholar
- 6.C.A. dos Santos, M.M. Seckler, A.P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, and M. Rai, J. Pharm. Sci. 103, 1931 (2014).CrossRefGoogle Scholar
- 7.V. Mittal, Macromol. Mater. Eng. 299, 906 (2014).CrossRefGoogle Scholar
- 8.Q. Bao, D. Zhang, and P. Qi, J. Colloid Interface Sci. 360, 463 (2011).CrossRefGoogle Scholar
- 9.C. Chen, W.-T. Zhai, W.-G. Zheng, D.-D. Lu, J. Wang, B. Shen, and H.-B. Zhang, J. Inorg. Mater. 26, 707 (2011).CrossRefGoogle Scholar
- 10.M. Samal, J.M. Lee, W.I. Park, D.K. Yi, U. Paik, and C.-L. Lee, J. Nanosci. Nanotechnol. 11, 10069 (2011).CrossRefGoogle Scholar
- 11.T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, and P.D. Ye, Appl. Phys. Lett. 95, 172105 (2009).CrossRefGoogle Scholar
- 12.F. He, J. Fan, D. Ma, L. Zhang, C. Leung, and H.L. Chan, Carbon 48, 3139 (2010).CrossRefGoogle Scholar
- 13.X.Z. Tang, Z. Cao, H.B. Zhang, J. Liu, and Z.Z. Yu, Chem. Commun. 47, 3084 (2011).CrossRefGoogle Scholar
- 14.V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater Sci. 56, 1178 (2011).CrossRefGoogle Scholar
- 15.S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Carbon 44, 3342 (2006).CrossRefGoogle Scholar
- 16.C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
- 17.Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, and G. Jiang, Angew. Chem. Int. Ed. Engl. 50, 5913 (2011).CrossRefGoogle Scholar
- 18.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
- 19.R.L.D. Whitby, A. Korobeinyk, and K.V. Glevatska, Carbon 49, 722 (2011).CrossRefGoogle Scholar
- 20.V. Jain, A. Kumar, B. Sivaiah, A. Dhar, In: M. Muruganant, A. Chirazi, B. Raj (eds.) Frontiers in Materials Processing, Applications, Research and Technology, p. 155. Springer, Singapore, (2018).Google Scholar
- 21.S.F. Pei and H.M. Cheng, Carbon 50, 3210 (2012).CrossRefGoogle Scholar
- 22.H. Kim, A.A. Abdala, and C.W. Macosko, Macromolecules 43, 6515 (2010).CrossRefGoogle Scholar
- 23.M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, and W. Tremel, J. Mater. Chem. A3, 18753 (2015).CrossRefGoogle Scholar
- 24.Y. Xu, K. Sheng, C. Li, and G. Shi, ACS Nano 4, 4324 (2010).CrossRefGoogle Scholar
- 25.S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, ACS Nano 4, 2822 (2010).CrossRefGoogle Scholar
- 26.Y. Zhi, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S. Kong, and Y. Zhang, Nano-Micro. Lett. 41, 247 (2013).Google Scholar
- 27.H. Liu, L. Zhong, K.-S. Yun, and M. Samal, Biotechnol. Bioprocess Eng. 21, 1 (2016).CrossRefGoogle Scholar
- 28.X. Qi, K.-Y. Pu, H. Li, X. Zhou, S. Wu, Q.-L. Fan, B. Liu, F. Boey, W. Huang, and H. Zhang, Angew. Chem. Int. Ed. 49, 9426 (2010).CrossRefGoogle Scholar
- 29.A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An’mat, B.Y.S. Chang, N. Yussof, I. Harrison, H.N. Lim, C.H. Chia, and S.V. Kumar, Mater. Lett. 80, 9 (2012).CrossRefGoogle Scholar
- 30.T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, and C.M. Lieber, Nano Lett. 10, 1098 (2010).CrossRefGoogle Scholar
- 31.R. Atif and F. Inam, Beilstein J. Nanotechnol. 7, 1174 (2016).CrossRefGoogle Scholar
- 32.J.-H. Chen, K.-C. Hsu, and M.-Y. Hsieh, Ind. Eng. Chem. Res. 55, 4390 (2016).CrossRefGoogle Scholar
- 33.C. Xu, X. Wang, and J. Zhu, J. Phys. Chem. C 112, 19841 (2008).CrossRefGoogle Scholar
- 34.O. Akhavan, E. Ghaderi, S. Aghayee, and A. Talebi, J. Mater. Chem. 22, 13773 (2012).CrossRefGoogle Scholar
- 35.M.G. Guzmán, J. Dille, and S. Godet, Int. J. Chem. Biomol. Eng. 2, 104 (2009).Google Scholar
- 36.C.K. Chua and M. Pumera, Chem. Soc. Rev. 43, 291 (2014).CrossRefGoogle Scholar
- 37.C.K. Tzahi, Q. Quan, L. Qiang, F. Yin, and M.L. Charles, Nano Lett. 10, 98 (2010).Google Scholar
- 38.S.C. Tjong, Mater. Sci. Eng. R Rep. 74, 281 (2013).CrossRefGoogle Scholar
- 39.W.R. Matizamhuka, J. South Afr. Inst. Min. Metall. 116, 1171 (2016).CrossRefGoogle Scholar
- 40.S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Mater. Sci. Eng. A 528, 7933 (2011).CrossRefGoogle Scholar
- 41.J.H. Wu, H.L. Zhang, Y. Zhang, and X.T. Wang, Mater. Des. 41, 344 (2012).CrossRefGoogle Scholar
- 42.K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1292 (2012).CrossRefGoogle Scholar
- 43.J. Liu, H. Jan, M.J. Reece, and K. Jiang, J. Eur. Ceram. Soc. 32, 4185 (2012).CrossRefGoogle Scholar
- 44.J. Liu, H. Yan, and K. Jiang, Ceram. Int. 39, 6215 (2013).CrossRefGoogle Scholar
- 45.W. Tian, S. Li, B. Wang, X. Chen, J. Liu, and M. Yu, Int. J. Miner. Metall. Mater. 23, 723 (2016).CrossRefGoogle Scholar
- 46.Y. Shuai: Dissertation for the Master Degree in Engineering of Harbin Institute of Technology, vol. 50 (2011).Google Scholar
- 47.M. Yu, P.R. Liu, Y.J. Sun, J.H. Liu, J.W. An, and S.M. Li, J. Inorg. Mater. 27, 89 (2012).CrossRefGoogle Scholar
- 48.J.W. Zheng, Z.L. Wang, Q. Ling, W. Cai, L.Q. Jiang, Q. Li, Y. Ying, and S.L. Che, Appl. Surf. Sci. 313, 346 (2014).CrossRefGoogle Scholar
- 49.M. Rongjun, Rare Met. Cemented Carbides. 36, 28 (2009).Google Scholar
- 50.N. Chomsaeng and N. Poolthong, Chiang Mai Univ. J. Nat. Sci. 16, 4 (2017).Google Scholar