, Volume 71, Issue 2, pp 541–547 | Cite as

Performance Analysis of Silver-Based Graphene Nanocomposite Bulk Materials Obtained by Spark Plasma Sintering

  • Hui ZhangEmail author
  • Xianhui Wang
  • Yapeng Li
  • Changsheng Guo
  • Changming Zhang
Advanced Nanocomposite Materials: Structure-Property Relationships


Silver-based bulk materials containing Ag/reduced graphene oxide (Ag/rGO) nanocomposite were prepared via a two-step procedure. First, a one-pot procedure was used to form Ag/rGO nanocomposites from AgNO3 and GO using hydrazine as a reductant. Then, Ag/rGO nanocomposites with various graphene contents were mixed with silver nanopowder and consolidated using spark plasma sintering. The hardness of the bulk material increased to 70 HV when the graphene content was increased to 2.5 wt.%. The bulk densification varied from 87.2% to 96% and was highest at graphene content of 2.5 wt.%. The conductivity (43.00–53.73 MS/m) was highest at 0.7 wt.% graphene content. The variation of the intensity and conductivity is mainly related to the formation of Ag-C bonds, while the variation of the density is mainly related to the sintering process.



This work was supported by the National Natural Science Foundation of China (Grant No. 51201094). The authors also thank Ningbo Pioneer Electronic Technology Co. Ltd. of China for equipment support.


  1. 1.
    I.W. Frank, D.M. Tanenbaum, A.M. Van der Zande, and P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).CrossRefGoogle Scholar
  2. 2.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 32, 385 (2008).CrossRefGoogle Scholar
  3. 3.
    K.M.F. Shahil and A.A. Balandin, Solid State Commun. 152, 1331 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, J. Mater. Chem. 20, 743 (2010).CrossRefGoogle Scholar
  5. 5.
    D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.H. Min, and K. Kostarelos, Adv. Mater. 25, 2258 (2013).CrossRefGoogle Scholar
  6. 6.
    C.A. dos Santos, M.M. Seckler, A.P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, and M. Rai, J. Pharm. Sci. 103, 1931 (2014).CrossRefGoogle Scholar
  7. 7.
    V. Mittal, Macromol. Mater. Eng. 299, 906 (2014).CrossRefGoogle Scholar
  8. 8.
    Q. Bao, D. Zhang, and P. Qi, J. Colloid Interface Sci. 360, 463 (2011).CrossRefGoogle Scholar
  9. 9.
    C. Chen, W.-T. Zhai, W.-G. Zheng, D.-D. Lu, J. Wang, B. Shen, and H.-B. Zhang, J. Inorg. Mater. 26, 707 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Samal, J.M. Lee, W.I. Park, D.K. Yi, U. Paik, and C.-L. Lee, J. Nanosci. Nanotechnol. 11, 10069 (2011).CrossRefGoogle Scholar
  11. 11.
    T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, and P.D. Ye, Appl. Phys. Lett. 95, 172105 (2009).CrossRefGoogle Scholar
  12. 12.
    F. He, J. Fan, D. Ma, L. Zhang, C. Leung, and H.L. Chan, Carbon 48, 3139 (2010).CrossRefGoogle Scholar
  13. 13.
    X.Z. Tang, Z. Cao, H.B. Zhang, J. Liu, and Z.Z. Yu, Chem. Commun. 47, 3084 (2011).CrossRefGoogle Scholar
  14. 14.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater Sci. 56, 1178 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Carbon 44, 3342 (2006).CrossRefGoogle Scholar
  16. 16.
    C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
  17. 17.
    Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, and G. Jiang, Angew. Chem. Int. Ed. Engl. 50, 5913 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  19. 19.
    R.L.D. Whitby, A. Korobeinyk, and K.V. Glevatska, Carbon 49, 722 (2011).CrossRefGoogle Scholar
  20. 20.
    V. Jain, A. Kumar, B. Sivaiah, A. Dhar, In: M. Muruganant, A. Chirazi, B. Raj (eds.) Frontiers in Materials Processing, Applications, Research and Technology, p. 155. Springer, Singapore, (2018).Google Scholar
  21. 21.
    S.F. Pei and H.M. Cheng, Carbon 50, 3210 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Kim, A.A. Abdala, and C.W. Macosko, Macromolecules 43, 6515 (2010).CrossRefGoogle Scholar
  23. 23.
    M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, and W. Tremel, J. Mater. Chem. A3, 18753 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Xu, K. Sheng, C. Li, and G. Shi, ACS Nano 4, 4324 (2010).CrossRefGoogle Scholar
  25. 25.
    S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, ACS Nano 4, 2822 (2010).CrossRefGoogle Scholar
  26. 26.
    Y. Zhi, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S. Kong, and Y. Zhang, Nano-Micro. Lett. 41, 247 (2013).Google Scholar
  27. 27.
    H. Liu, L. Zhong, K.-S. Yun, and M. Samal, Biotechnol. Bioprocess Eng. 21, 1 (2016).CrossRefGoogle Scholar
  28. 28.
    X. Qi, K.-Y. Pu, H. Li, X. Zhou, S. Wu, Q.-L. Fan, B. Liu, F. Boey, W. Huang, and H. Zhang, Angew. Chem. Int. Ed. 49, 9426 (2010).CrossRefGoogle Scholar
  29. 29.
    A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An’mat, B.Y.S. Chang, N. Yussof, I. Harrison, H.N. Lim, C.H. Chia, and S.V. Kumar, Mater. Lett. 80, 9 (2012).CrossRefGoogle Scholar
  30. 30.
    T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, and C.M. Lieber, Nano Lett. 10, 1098 (2010).CrossRefGoogle Scholar
  31. 31.
    R. Atif and F. Inam, Beilstein J. Nanotechnol. 7, 1174 (2016).CrossRefGoogle Scholar
  32. 32.
    J.-H. Chen, K.-C. Hsu, and M.-Y. Hsieh, Ind. Eng. Chem. Res. 55, 4390 (2016).CrossRefGoogle Scholar
  33. 33.
    C. Xu, X. Wang, and J. Zhu, J. Phys. Chem. C 112, 19841 (2008).CrossRefGoogle Scholar
  34. 34.
    O. Akhavan, E. Ghaderi, S. Aghayee, and A. Talebi, J. Mater. Chem. 22, 13773 (2012).CrossRefGoogle Scholar
  35. 35.
    M.G. Guzmán, J. Dille, and S. Godet, Int. J. Chem. Biomol. Eng. 2, 104 (2009).Google Scholar
  36. 36.
    C.K. Chua and M. Pumera, Chem. Soc. Rev. 43, 291 (2014).CrossRefGoogle Scholar
  37. 37.
    C.K. Tzahi, Q. Quan, L. Qiang, F. Yin, and M.L. Charles, Nano Lett. 10, 98 (2010).Google Scholar
  38. 38.
    S.C. Tjong, Mater. Sci. Eng. R Rep. 74, 281 (2013).CrossRefGoogle Scholar
  39. 39.
    W.R. Matizamhuka, J. South Afr. Inst. Min. Metall. 116, 1171 (2016).CrossRefGoogle Scholar
  40. 40.
    S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Mater. Sci. Eng. A 528, 7933 (2011).CrossRefGoogle Scholar
  41. 41.
    J.H. Wu, H.L. Zhang, Y. Zhang, and X.T. Wang, Mater. Des. 41, 344 (2012).CrossRefGoogle Scholar
  42. 42.
    K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1292 (2012).CrossRefGoogle Scholar
  43. 43.
    J. Liu, H. Jan, M.J. Reece, and K. Jiang, J. Eur. Ceram. Soc. 32, 4185 (2012).CrossRefGoogle Scholar
  44. 44.
    J. Liu, H. Yan, and K. Jiang, Ceram. Int. 39, 6215 (2013).CrossRefGoogle Scholar
  45. 45.
    W. Tian, S. Li, B. Wang, X. Chen, J. Liu, and M. Yu, Int. J. Miner. Metall. Mater. 23, 723 (2016).CrossRefGoogle Scholar
  46. 46.
    Y. Shuai: Dissertation for the Master Degree in Engineering of Harbin Institute of Technology, vol. 50 (2011).Google Scholar
  47. 47.
    M. Yu, P.R. Liu, Y.J. Sun, J.H. Liu, J.W. An, and S.M. Li, J. Inorg. Mater. 27, 89 (2012).CrossRefGoogle Scholar
  48. 48.
    J.W. Zheng, Z.L. Wang, Q. Ling, W. Cai, L.Q. Jiang, Q. Li, Y. Ying, and S.L. Che, Appl. Surf. Sci. 313, 346 (2014).CrossRefGoogle Scholar
  49. 49.
    M. Rongjun, Rare Met. Cemented Carbides. 36, 28 (2009).Google Scholar
  50. 50.
    N. Chomsaeng and N. Poolthong, Chiang Mai Univ. J. Nat. Sci. 16, 4 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hui Zhang
    • 1
    • 2
    Email author
  • Xianhui Wang
    • 1
  • Yapeng Li
    • 2
  • Changsheng Guo
    • 3
  • Changming Zhang
    • 3
  1. 1.Shaanxi Key Laboratory of Electrical Materials and Infiltration TechnologyXi’an University of TechnologyXi’anChina
  2. 2.School of Materials Science and EngineeringShaanxi University of TechnologyHanzhongChina
  3. 3.School of Mechanical EngineeringShaanxi University of TechnologyHanzhongChina

Personalised recommendations