Advertisement

JOM

, Volume 71, Issue 2, pp 585–592 | Cite as

Synthesis of Amorphous/Crystalline Laminated Metals via Accumulative Roll Bonding

  • Sina Shahrezaei
  • Douglas C. Hofmann
  • Suveen N. MathaudhuEmail author
Advanced Nanocomposite Materials: Structure-Property Relationships
  • 70 Downloads

Abstract

Bulk metallic glasses (BMG) are best known for their high strength and hardness; however, due to their limited tensile plasticity, they are undesirable for many structural applications. Nano-laminated amorphous/crystalline metals fabricated via deposition techniques have been shown to deform homogeneously while demonstrating extraordinary mechanical properties, including high strength and ductility; however, their fabrication is limited in size and scalability potential. Here, accumulative roll bonding has been demonstrated as a scalable fabrication technique for the processing of nanolaminated Zr-based BMG/Ni composites. The rolling was performed at elevated temperatures, utilizing the thermoplastic formability of the BMG in its supercooled liquid region. Microhardness measurements were utilized to investigate the thermo-mechanical history of the BMG phase. Refined BMG layers with thicknesses as small as 34 nm have been characterized using transmission electron microscopy techniques. The resulting amorphous/crystalline interface has been demonstrated to have an effective interface width of 3–4 nm.

Notes

Acknowledgements

Prof. Irene Beyerlein of UC Santa Barbara is acknowledged for useful conversations on roll-bonding of the investigated materials. This work was supported in part by the University of California, Riverside and NSF CMMI Grant 1550986. Douglas Hofmann acknowledges support from the Presidential Early Career Award. Part of this research was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsements by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Electron microscopy and FIB was performed on FEI NNS450 SEM, FEI Titan Themis 300 STEM and FEI Quanta 3D 200i FIB/SEM in CFAMM at UC Riverside.

References

  1. 1.
    P.S. Steif, F. Spaepen, and J.W. Hutchinson, Acta Metall. 30, 447 (1982).CrossRefGoogle Scholar
  2. 2.
    F. Spaepen, Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
  3. 3.
    W.F. Wu, Y. Li, and C.A. Schuh, Philos. Mag. 88, 71 (2008).CrossRefGoogle Scholar
  4. 4.
    F.X. Liu, P.K. Liaw, G.Y. Wang, C.L. Chiang, D.A. Smith, P.D. Rack, J.P. Chu, and R.A. Buchanan, Intermetallics 14, 1014 (2006).CrossRefGoogle Scholar
  5. 5.
    C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
  6. 6.
    C.A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys. 103, 083539 (2008).CrossRefGoogle Scholar
  7. 7.
    D. Jang and J.R. Greer, Nat. Mater. 9, 215 (2010).CrossRefGoogle Scholar
  8. 8.
    J.-Y. Kim, D. Jang, and J.R. Greer, Adv. Funct. Mater. 21, 4550 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Cui, P. Huang, F. Wang, T.J. Lu, and K.W. Xu, Thin Solid Films 584, 270 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Brandl, T.C. Germann, and A. Misra, Acta Mater. 61, 3600 (2013).CrossRefGoogle Scholar
  11. 11.
    B. Cheng and J.R. Trelewicz, Acta Mater. 153, 314 (2018).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. 104, 11155 (2007).CrossRefGoogle Scholar
  13. 13.
    I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, and A. Misra, Proc. Natl. Acad. Sci. 111, 4386 (2014).CrossRefGoogle Scholar
  14. 14.
    L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang, Acta Mater. 110, 341 (2016).CrossRefGoogle Scholar
  15. 15.
    K. Mori, N. Bay, L. Fratini, F. Micari, and A.E. Tekkaya, CIRP Ann. 62, 673 (2013).CrossRefGoogle Scholar
  16. 16.
    N. Bay, J. Eng. Ind. 101, 121 (1979).CrossRefGoogle Scholar
  17. 17.
    A. Anghelus, M.-N. Avettand-Fènoël, C. Cordier, and R. Taillard, J. Alloys Compd. 631, 209 (2015).CrossRefGoogle Scholar
  18. 18.
    D. East, M.A. Gibson, D. Liang, and J.-F. Nie, Metall. Mater. Trans. A 44, 2010 (2013).CrossRefGoogle Scholar
  19. 19.
    T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans., JIM 32, 1005 (1991).CrossRefGoogle Scholar
  20. 20.
    W.C. Fan, C.R. Drumm, S.B. Roeske, and G.J. Scrivner, IEEE Trans. Nucl. Sci. 43, 2790 (1996).CrossRefGoogle Scholar
  21. 21.
    S.N. Mathaudhu, Fabrication of Amorphous Metal Matrix Composites by Severe Plastic Deformation (College Station: Texas A&M University, 2006).Google Scholar
  22. 22.
    D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, and T. Shi, J. Alloys Compd. 484, 118 (2009).CrossRefGoogle Scholar
  23. 23.
    Z. Zhang and J. Xie, Mater. Sci. Eng., A 407, 161 (2005).CrossRefGoogle Scholar
  24. 24.
    T. Nagase and Y. Umakoshi, Mater. Trans. 45, 13 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Saida, R. Yamada, and M. Wakeda, Appl. Phys. Lett. 103, 221910 (2013).CrossRefGoogle Scholar
  26. 26.
    U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Acta Mater. 53, 705 (2005).CrossRefGoogle Scholar
  27. 27.
    H.S. Kim, Scr. Mater. 48, 43 (2003).CrossRefGoogle Scholar
  28. 28.
    G. Anne, M.R. Ramesh, H.S. Nayaka, and S.B. Arya, Perspect. Sci. 8, 104 (2016).CrossRefGoogle Scholar
  29. 29.
    S.H.S. Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and S. Zangeneh, Mater. Sci. Eng., A 718, 311 (2018).CrossRefGoogle Scholar
  30. 30.
    Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 69, 1208 (1996).CrossRefGoogle Scholar
  31. 31.
    W.F. Hosford and R.M. Caddell, Metal Forming (Cambridge: Cambridge University Press, 2007).CrossRefGoogle Scholar
  32. 32.
    A. Mozaffari, H. Danesh Manesh, and K. Janghorban, J. Alloys Compd. 489, 103 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H. Li, C. Kong, and Q. Qin, Sci. Rep. 4, 5017 (2015).CrossRefGoogle Scholar
  34. 34.
    F. Shimizu, S. Ogata, and J. Li, Acta Mater. 54, 4293 (2006).CrossRefGoogle Scholar
  35. 35.
    S.D. Feng, L. Li, K.C. Chan, L. Qi, L. Zhao, L.M. Wang, and R.P. Liu, J. Alloys Compd. 770, 896 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaRiversideUSA
  2. 2.Engineering and Science Directorate, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Mechanical EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations