, Volume 71, Issue 2, pp 548–558 | Cite as

Effect of Hollow Glass Microspheres on the Morphology, Rheology and Crystallinity of Short Bamboo Fiber-Reinforced Hybrid Polypropylene Composite

  • Rupam Gogoi
  • Nityanshu Kumar
  • Shubham Mireja
  • Sham Sundar Ravindranath
  • Gaurav ManikEmail author
  • Shishir Sinha
Advanced Nanocomposite Materials: Structure-Property Relationships


Light-weight and high-strength polymer composites have attracted the special attention of automotive and aerospace sectors since they offer advantages such as less fuel consumption and higher fuel efficiency. In the present study, an effort has been made to prepare such polymer composites using natural fiber and very low-density hollow inorganic particles. The use of hollow glass microspheres (HGM) as a potential filler particle for making light-weight hybrid polymer composites was investigated. Polypropylene (PP) and maleic anhydride-grafted-polypropylene (in 9:1 ratio) constituted the base matrix (BM). For strength reinforcement, alkali-treated short bamboo fibers (SBF) were employed, while for making the composite material light in weight, HGM were incorporated. Silane treatment of HGM by (3-aminopropyl)triethoxysilane was performed to enhance interfacial adhesion with BM. Adequate wetting of HGM and SBF was evident from the SEM images of cryo-fractured samples. A 14% increase in tensile strength was observed in comparison to virgin PP for the composite with 5 wt.% HGM, and a desirable decrease in density was observed for all the composite samples with increasing HGM content. Improvement in hardness but a marginal decrease in impact strength due to HGM fillers was observed. Rheological analysis of the composite melt samples showed an apparent increase in the complex modulus with increasing HGM content. Thermal analysis of the composites revealed a significant impact of hybrid fillers on the crystallinity, with SBF showing a minimal effect while HGM reducing it significantly. Wide-angle x-ray diffraction spectra showed changes in the crystal structure of the composite with noticeable β-form peaks.



The authors are grateful to the Ministry of Human Resource Development (MHRD), Government of India for financial support.

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Supplementary material

11837_2018_3268_MOESM1_ESM.pdf (467 kb)
Supplementary material 1 (PDF 476 kb)


  1. 1.
    E.R. Fuchs, F.R. Field, R. Roth, and R.E. Kirchain, Compos. Sci. Technol. 68, 1989 (2008).CrossRefGoogle Scholar
  2. 2.
    R.M. Wang, S.R. Zheng, and Y.G. Zheng, Polymer Matrix Composites and Technology, 1st ed. (Cambridge: Woodhead, 2011), pp. 1–25.CrossRefGoogle Scholar
  3. 3.
    M.H.P.S. Jawaid and H.A. Khalil, Carbohydr. Polym. 86, 1 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol. 63, 1259 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Cao and Y. Wu, J. Cent. South Univ. Technol. 15, 564 (2008).CrossRefGoogle Scholar
  6. 6.
    B.H. Lee, H.J. Kim, and W.R. Yu, Fibers Polym. 10, 83 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Okubo, T. Fujii, and Y. Yamamoto, Compos. Part A 35, 377 (2004).CrossRefGoogle Scholar
  8. 8.
    J.M.O. Scurlock, D.C. Dayton, and B. Hames, Biomass Bioenergy 19, 229 (2000).CrossRefGoogle Scholar
  9. 9.
    P.K. Kushwaha and R. Kumar, J. Reinf. Plast. Compos. 29, 1952 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Mandal, S. Alam, I.K. Varma, and S.N. Maiti, J. Reinf. Plast. Compos. 29, 43 (2010).CrossRefGoogle Scholar
  11. 11.
    S.K. Chattopadhyay, R.K. Khandal, R. Uppaluri, and A.K. Ghoshal, J. Appl. Polym. Sci. 119, 1619 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Chen, Q. Guo, and Y. Mi, J. Appl. Polym. Sci. 69, 1891 (1998).CrossRefGoogle Scholar
  13. 13.
    H.A. Khalil, I.U.H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, and Y.S. Hadi, Mater. Des. 42, 353 (2012).CrossRefGoogle Scholar
  14. 14.
    Q.T. Shubhra, A.K.M.M. Alam, and M.A. Quaiyyum, J. Thermoplast. Compos. Mater. 26, 362 (2013).CrossRefGoogle Scholar
  15. 15.
    C. Wang, Y. Xian, H. Cheng, W. Li, and S. Zhang, Bioresources 10, 6783 (2015).Google Scholar
  16. 16.
    L.Y. Mwaikambo and M.P. Ansell, J. Appl. Polym. Sci. 84, 2222 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, S. Parija, S.K. Nayak, and S.S. Tripathy, Compos. Sci. Technol. 63, 1377 (2003).CrossRefGoogle Scholar
  18. 18.
    R.A. Clark and M.P. Ansell, J. Mater. Sci. 21, 269 (1986).CrossRefGoogle Scholar
  19. 19.
    K. Jarukumjorn and N. Suppakarn, Compos. Part B 40, 623 (2009).CrossRefGoogle Scholar
  20. 20.
    H.M. Akil, C. Santulli, F. Sarasini, J. Tirillò, and T. Valente, Compos. Sci. Technol. 94, 62 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Panthapulakkal and M. Sain, J. Compos. Mater. 41, 1871 (2007).CrossRefGoogle Scholar
  22. 22.
    H.R. Rao, A.V. Rajulu, G.R. Reddy, and K.H. Reddy, J. Reinf. Plast. Compos. 29, 1446 (2010).CrossRefGoogle Scholar
  23. 23.
    B. Kc, J. Tjong, S.A. Jaffer, and M. Sain, J. Polym. Environ. 26, 1279 (2018).CrossRefGoogle Scholar
  24. 24.
    M.M. Haque and M. Hasan, Adv. Mater. Process. Technol. 4, 511 (2018).Google Scholar
  25. 25.
    N. Rasana, D. Malavika, R. Aparna, T. Deepak, P.S. Haritha, and K. Jayanarayanan, Mater. Today 5, 16478 (2018).CrossRefGoogle Scholar
  26. 26.
    S. Banerjee and B.V. Sankar, Compos. Part B 58, 318 (2014).CrossRefGoogle Scholar
  27. 27.
    M.N. Gururaja and A.H. Rao, Int. J. Soft Comput. Eng. 1, 2231 (2012).Google Scholar
  28. 28.
    J. Zhang, K. Chaisombat, S. He, and C.H. Wang, Mater. Des. (1980–2015) 36, 75 (2012).CrossRefGoogle Scholar
  29. 29.
    N. Reddy and Y. Yang, Polym. Int. 59, 884 (2010).CrossRefGoogle Scholar
  30. 30.
    X. Hou, F. Sun, D. Yan, H. Xu, Z. Dong, Q. Li, and Y. Yang, J. Clean. Prod. 83, 454 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Huda and Y. Yang, Ind. Crops Prod. 30, 17 (2009).CrossRefGoogle Scholar
  32. 32.
    S. Huda, N. Reddy, and Y. Yang, Compos. B 43, 1658 (2012).CrossRefGoogle Scholar
  33. 33.
    S. Huda and Y. Yang, J. Polym. Environ. 17, 131 (2009).CrossRefGoogle Scholar
  34. 34.
    S. Huda and Y. Yang, Macromol. Mater. Eng. 293, 235 (2008).CrossRefGoogle Scholar
  35. 35.
    N. Kumar, S. Mireja, V. Khandelwal, B. Arun, and G. Manik, Compos. Part B 109, 277 (2017).CrossRefGoogle Scholar
  36. 36.
    N. Gupta, D. Pinisetty, and V.C. Shunmugasamy, Reinforced Polymer Matrix Syntactic Foams: Effect of Nano and Micro-Scale Reinforcement, 1st ed. (New York: Springer, 2013), pp. 1–8.Google Scholar
  37. 37.
    D. Debnath and B.B. Khatua, Macromol. Res. 19, 519 (2011).CrossRefGoogle Scholar
  38. 38.
    V.V. Budov, Glass Ceram. 51, 230 (1994).CrossRefGoogle Scholar
  39. 39.
    B.H. Rutz and J.C. Berg, Adv. Colloid Interface Sci. 160, 56 (2010).CrossRefGoogle Scholar
  40. 40.
    K.C. Yung, B.L. Zhu, T.M. Yue, and C.S. Xie, Compos. Sci. Technol. 69, 260 (2009).CrossRefGoogle Scholar
  41. 41.
    F.N. Mutua, P. Lin, J.K. Koech, and Y. Wang, Mater. Sci. Appl. 3, 856 (2012).Google Scholar
  42. 42.
    Y.H. Cui, X.X. Wang, Z.Q. Li, and J. Tao, J. Vinyl Addit. Technol. 16, 189 (2010).Google Scholar
  43. 43.
    W.A.N.G. Bo, C. Huang, Z. Huang, and J. Zhang, Chin. J. Mater. Res. 30, 209 (2016).Google Scholar
  44. 44.
    X. Lu, J. Qu, and J. Huang, Plast. Rubber Compos. 44, 306 (2015).CrossRefGoogle Scholar
  45. 45.
    X. Hu, H.S. Xu, and Z.M. Li, Macromol. Mater. Eng. 292, 646 (2007).CrossRefGoogle Scholar
  46. 46.
    S.N. Patankar and Y.A. Kranov, Mater. Sci. Eng. A 527, 1361 (2010).CrossRefGoogle Scholar
  47. 47.
    J.Z. Liang and R.K.Y. Li, Polym. Int. 49, 170 (2000).CrossRefGoogle Scholar
  48. 48.
    T.E. Borges, J.H.S. Almeida, S.C. Amico, and F.D. Amado, Polym. Bull. 74, 1979 (2017).CrossRefGoogle Scholar
  49. 49.
    J.Z. Liang, J. Appl. Polym. Sci. 104, 1697 (2007).CrossRefGoogle Scholar
  50. 50.
    S. Siddika, F. Mansura, and M. Hasan, Eng. Technol. 73, 1145 (2013).Google Scholar
  51. 51.
    S.K. Nayak, S. Mohanty, and S.K. Samal, Mater. Sci. Eng. A 523, 32 (2009).CrossRefGoogle Scholar
  52. 52.
    J. Li, X. Luo, and X. Lin, Mater. Des. 46, 902 (2013).CrossRefGoogle Scholar
  53. 53.
    K.C.M. Nair, R.P. Kumar, S. Thomas, S.C. Schit, and K. Ramamurthy, Compos. Part A 31, 1231 (2000).CrossRefGoogle Scholar
  54. 54.
    Y. Mi, X. Chen, and Q. Guo, J. Appl. Polym. Sci. 64, 1267 (1997).CrossRefGoogle Scholar
  55. 55.
    R.A. Amoresi, A.A. Felix, E.R. Botero, N.L. Domingues, E.A. Falcão, M.A. Zaghete, and A.W. Rinaldi, Ceram. Int. 41, 14733 (2015).CrossRefGoogle Scholar
  56. 56.
    D. Eiras and L.A. Pessan, Mater. Res. 12, 523 (2009).CrossRefGoogle Scholar
  57. 57.
    S. Borysiak, Ł. Klapiszewski, K. Bula, and T. Jesionowski, J. Therm. Anal. Calorim. 126, 251 (2016).CrossRefGoogle Scholar
  58. 58.
    H. Huo, S. Jiang, L. An, and J. Feng, Macromolecules 37, 2478 (2004).CrossRefGoogle Scholar
  59. 59.
    P. Jacoby, Plast. Addit. Compd. 9, 32 (2007).CrossRefGoogle Scholar
  60. 60.
    A.T. Jones, J.M. Aizlewood, and D.R. Beckett, Macromol. Chem. Phys. 75, 134 (1964).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Rupam Gogoi
    • 1
  • Nityanshu Kumar
    • 1
  • Shubham Mireja
    • 1
  • Sham Sundar Ravindranath
    • 1
  • Gaurav Manik
    • 1
    Email author
  • Shishir Sinha
    • 2
  1. 1.Department of Polymer and Process EngineeringIndian Institute of Technology RoorkeeSaharanpurIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations