Advertisement

JOM

pp 1–9 | Cite as

Preparation and Properties of Pseudo-boehmite Obtained from High-Alumina Fly Ash by a Sintering–CO2 Decomposition Process

  • Guozhi Lu
  • Tingan ZhangEmail author
  • Wei Feng
  • Weiguang Zhang
  • Yanxiu Wang
  • Zimu Zhang
  • Long Wang
  • Yan Liu
  • Zhihe Dou
Primary Aluminum Production Chain: Bauxite-Alumina-Electrode-Reduction
  • 86 Downloads

Abstract

A sinteringCO2 decomposition process for preparation of pseudo-boehmite is proposed for clean valorization of high-alumina fly ash. The effects of different synthesis conditions on the crystal structure and textual properties of the pseudo-boehmite were studied systematically. The results showed that the main product was NaAlCO3(OH)2 when the decomposition terminal pH was below 9.5, and the optimal terminal pH for the pseudo-boehmite (PB) product was 10.5. The optimal aging time was 4 h, and the peptization ratio of PB reached 97.5% when the aging temperature was 90°C. Under decomposition conditions of 30 g/L initial alumina concentration in liquid phase and temperature of 40°C, followed by 4 h of aging treatment, the specific surface area of PB was 425 m2/g. The pore volume of PB product reached 0.6920 cm3/g at decomposition conditions of 40 g/L and 30°C.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51874078, U1710257, and U1202274), Fundamental Research Funds for the Central Universities of China (Nos. N140203005 and N140204015), Science and Technology Research Projects of Liaoning Education Department (No. L2014096), and State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006).

References

  1. 1.
    G.Y. Zhu, H.Q. Li, S.P. Li, X.J. Hou, and X.R. Wang, Chin. J. Chem. Eng. 25, 1539 (2017).CrossRefGoogle Scholar
  2. 2.
    C.L. Liu, S.L. Zheng, S.H. Ma, Y. Luo, J. Ding, X.H. Wang, and Y. Zhang, Fuel Process. Technol. 173, 40 (2018).CrossRefGoogle Scholar
  3. 3.
    J.M. Sun and P. Chen, Adv. Mater. Res. 652–654, 2570 (2013).CrossRefGoogle Scholar
  4. 4.
    S. Ruan, L.N. Shi, J. Li, and A.R. Gerson, Hydrometallurgy 169, 297 (2017).CrossRefGoogle Scholar
  5. 5.
    X.B. Li, W. Xiao, W. Liu, G.H. Liu, Z.H. Peng, Q.S. Zhou, and T.G. Qi, Trans. Nonferrous Metal. Soc. 19, 1342 (2009).CrossRefGoogle Scholar
  6. 6.
    T.A. Zhang, W.X. Zhu, and G.Z. Lu, Aluminum metallurgy technology (Beijing: Science Press, 2014), p. 5. (In Chinese).Google Scholar
  7. 7.
    L.Y. Sun, K. Luo, J.R. Fan, and H.L. Lu, Fuel 199, 22 (2017).CrossRefGoogle Scholar
  8. 8.
    Z.H. Wang, S.H. Ma, Z.H. Tang, X.H. Wang, and S.L. Zheng, J. Hazard. Mater. 308, 253 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Ding, S.H. Ma, S. Shen, Z.L. Xie, S.L. Zheng, and Y. Zhang, Waste Manage. 60, 375 (2017).CrossRefGoogle Scholar
  10. 10.
    S.F. Dai, L. Zhao, J.C. Hower, M.N. Johnston, W.J. Song, P.P. Wang, and S.F. Zhang, Energy Fuel 28, 1502 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Izquierdo and X. Querol, Int. J. Coal Geol. 94, 54 (2012).CrossRefGoogle Scholar
  12. 12.
    H.Y. Lin, L. Wan, and Y.F. Yang, Adv. Mater. Res. 512, 1548 (2012).CrossRefGoogle Scholar
  13. 13.
    R. Padilla and H.Y. Sohn, Metall. Mater. Trans. B 16, 707 (1985).CrossRefGoogle Scholar
  14. 14.
    S.W. Bi and H.Y. Yu, Alumina Production Process (Beijing: Chemical Industry Press, 2006), p. 2. (In Chinese).Google Scholar
  15. 15.
    Z. Yang, J. Sun, Z. Zhang, J. Ye, and R. Miao, Chin. J Environ. Eng. 8, 3989 (2014).Google Scholar
  16. 16.
    M. Inoue, H. Kominami, and T. Inui, J. Mater. Sci. 29, 2459 (1994).CrossRefGoogle Scholar
  17. 17.
    Y. Yang, Y.Y. Xu, B.Z. Han, B.J. Xu, X.M. Liu, and Z.F. Yan, J. Colloid Interface Sci. 469, 1 (2016).CrossRefGoogle Scholar
  18. 18.
    N.V. Garderen, F.J. Clemens, C.G. Aneziris, and T. Graule, Ceram. Int. 38, 5481 (2012).CrossRefGoogle Scholar
  19. 19.
    M. Machida, M. Takenami, and H. Hamada, Solid State Ion. 172, 125 (2004).CrossRefGoogle Scholar
  20. 20.
    F.B. Kasumov, Kinet. Katal. 33, 374 (1992).Google Scholar
  21. 21.
    W. Cai, H. Li, and Y. Zhang, Colloids Surf. A 295, 185 (2007).CrossRefGoogle Scholar
  22. 22.
    J.H. Kwak, D. Mei, C.H.F. Peden, R. Rousseau, and J. Szanyi, Catal. Lett. 141, 649 (2011).CrossRefGoogle Scholar
  23. 23.
    K. Wefers and C. Misra, Alcoa Laboratories, 1 (1987).Google Scholar
  24. 24.
    B.J.J. Zelinski and D.R. Uhlmann, J. Phys. Chem. Solids 45, 1069 (1984).CrossRefGoogle Scholar
  25. 25.
    X.Q. Zhang, T.A. Zhang, W. Feng, S.Y. Yan, J.M. Sun, G.Z. Lv, and H.B. Yang, TMS Light Metals, 147 (2015).Google Scholar
  26. 26.
    Y.H. Wu, X.B. Fang, J.L. Qian, C.Q. Pan, and Z.N. Liu, Modern Chem. Ind., s1, 176 (2003). (In Chinese).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Guozhi Lu
    • 1
  • Tingan Zhang
    • 1
    Email author
  • Wei Feng
    • 1
  • Weiguang Zhang
    • 1
  • Yanxiu Wang
    • 1
  • Zimu Zhang
    • 1
  • Long Wang
    • 1
  • Yan Liu
    • 1
  • Zhihe Dou
    • 1
  1. 1.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations