Advertisement

JOM

pp 1–6 | Cite as

Solidification During Selective Laser Melting of Co-29Cr-6Mo Alloy

  • Z. W. Chen
  • T. Guraya
  • K. Darvish
  • M. A. L. Phan
  • T. Pasang
Technological Innovations in Metals Engineering
  • 21 Downloads

Abstract

Solidification during selective laser melting (SLM) needs to be better understood. In this work, track formation and how it affects grain growth during SLM of Co-29Cr-6Mo alloy over the laser power range of 180–360 W with other parameters kept constant have been studied. The track shape observed has suggested a conduction mode during SLM consistent with the calculated normalized enthalpy that indicates no significant vaporisation to form keyholes. Increasing the laser power led to increases in the track size with track boundaries remained largely circular arc-shaped. Grain growth direction and size are shown to be affected by track size. Measured values of track size have enabled the estimation of growth rate and, coupled with the measurement of cell size, the thermal gradient has been calculated. These data will be discussed in relation to modes of solidification.

Notes

Acknowledgements

Teresa Guraya wishes to thank Erasmus Mundus Partnerships “PANTHER” Programme for financially supporting her to conduct additive manufacturing research at Auckland University of Technology.

References

  1. 1.
    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).CrossRefGoogle Scholar
  2. 2.
    S.S. Babu, Scr. Mater. 135, 97 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565 (2018).CrossRefGoogle Scholar
  4. 4.
    D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, and M. Easton, Adv. Eng. Mater. 20, 1700952 (2018).CrossRefGoogle Scholar
  5. 5.
    Z.W. Chen, M.A.L. Phan, and K. Darvish, J. Mater. Sci. 52, 7415 (2017).CrossRefGoogle Scholar
  6. 6.
    K. Darvish, Z.W. Chen, M.A.L. Phan, and T. Pasang, Mater. Charact. 135, 183 (2018).CrossRefGoogle Scholar
  7. 7.
    K. Darvish, Z.W. Chen, and T. Pasang, Mater. Design 112, 357 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Kaplan, The Theory of Laser Materials Processing, ed. J. Dowden (Dordrecht: Springer, 2009), p. 71.CrossRefGoogle Scholar
  9. 9.
    D.B. Hann, J. Iammi, and J. Folkes, J. Phys. D 44, 445401 (2011).CrossRefGoogle Scholar
  10. 10.
    W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, G. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).CrossRefGoogle Scholar
  11. 11.
    W. Kurz and D.J. Fisher, Fundamentals of Solidification, 4th ed. (Stafa: Trans Tech Publications Ltd, 1998).Google Scholar
  12. 12.
    K. Harris and S. Sikkenga, In: Proceedings of the 24th BICTA Investment Casting Conference: New Horizons and Process Capabilities, British Investment Casting Trade Association, 1999, p. 8.Google Scholar
  13. 13.
    M.J. Bermingham, S.D. McDonald, D.H. StJohn, and M.S. Dargusch, J. Mater. Res. 26, 951 (2011).CrossRefGoogle Scholar
  14. 14.
    R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, and S.S. Babu, Mater. Sci. Technol. 31, 931 (2015).CrossRefGoogle Scholar
  15. 15.
    P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Technol. 135, 330 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Z. W. Chen
    • 1
  • T. Guraya
    • 2
  • K. Darvish
    • 1
  • M. A. L. Phan
    • 1
  • T. Pasang
    • 1
  1. 1.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Mining and Metallurgical Engineering and Materials ScienceUniversity of the Basque Country UPV/EHUBilbaoSpain

Personalised recommendations