Advertisement

JOM

pp 1–7 | Cite as

Effect of Microwave Roasting on Aluminum Extraction from Diasporic Bauxite-Sodium Carbonate-Calcium Hydroxide Mixtures

  • Thiquynhxuan Le
  • Shaohua Ju
  • A. V. Ravindra
  • Xiteng Li
  • Qi Wang
Technical Article
  • 16 Downloads

Abstract

The effect of microwave roasting on aluminum extraction from mixtures of diasporic bauxite with sodium carbonate and calcium hydroxide has been studied. The phase constitution and leaching performance of the clinkers were studied under different roasting conditions. Dielectric and thermal investigations on raw slurry obtained from the mix revealed prominent microwave absorption characteristics. X-ray diffraction patterns established significant promotion of NaAlO2 phase. In the microwave field, the aluminum (Al)-bearing minerals, viz. AlOOH and Al2O3, reacted with Ca(OH)2 to form calcium aluminate and calcium aluminum silicate phases at rather low temperature in short time. Furthermore, increasing the temperature and time promoted the reactions of AlOOH and Al2O3 with Na2CO3 to form NaAlO2, resulting in high Al leaching rates. Remarkably, the Al extraction of the clinker microwave roasted at 800°C for 45 min was 82.24%, while the leaching rates of Na and Si were 90.2% and 8.4%, respectively.

Notes

Acknowledgements

The authors acknowledge the financial support provided by China Postdoctoral Science Foundation Grant (2018M633424), Applied Basic Research Program of Yunnan Province (2015FA017), the first batch of Yunnan Provincial Postdoctoral Research Fund Project, Yunnan Province Post-Doctoral Training Fund in 2018, and Kunming University of Science and Technology for Post-Doctoral Fellowship.

References

  1. 1.
    M. Authier-Martin, G. Forte, S. Ostap, and J. See, JOM 53, 36 (2001).CrossRefGoogle Scholar
  2. 2.
    China bauxite imports up 3.4% in December 2016 [EB/OL]. Asian metal.Google Scholar
  3. 3.
    China bauxite mining operations: fourteen years [EB/OL]. China aluminium network.Google Scholar
  4. 4.
    X.B. Li, S.W. Yu, W.B. Dong, Y.K. Chen, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.Y. Jiang, Hydrometallurgy 152, 183 (2015).CrossRefGoogle Scholar
  5. 5.
    G.H. Li, F.Q. Gu, T. Jiang, J. Luo, B.N. Deng, and Z.W. Peng, JOM 69, 315 (2017).CrossRefGoogle Scholar
  6. 6.
    S. Cao, H. Ma, Y. Zhang, X. Chen, and Y. Zhang, Hydrometallurgy 140, 111 (2013).CrossRefGoogle Scholar
  7. 7.
    B.E.H. Jones, R.J. Haynes, and I.R. Phillips, Ecol. Eng. 84, 435 (2015).CrossRefGoogle Scholar
  8. 8.
    B.K. Gan, Z. Taylor, B.G. Xu, A.V. Riessen, R.D. Hart, X.D. Wang, and P. Smith, Int. J. Miner. Process. 123, 64 (2013).CrossRefGoogle Scholar
  9. 9.
    G. Power, M. Gräfe, and C. Klauber, Hydrometallurgy 108, 33 (2011).CrossRefGoogle Scholar
  10. 10.
    S.H. Ma, Z.G. Wen, J.N. Chen, and S.L. Zheng, Miner. Eng. 22, 793 (2009).CrossRefGoogle Scholar
  11. 11.
    X.B. Li, X.M. Liu, G.H. Liu, Z.H. Peng, and Y.X. Liu, Chin. J. Nonferr. Met. 6, 27 (2004).Google Scholar
  12. 12.
    S.W. Bi and H.Y. Yu, Alumina production technology, 1st edn. (Chemical Industry Press, Beijing, 2006), pp. 228, 318–320 (in Chinese)Google Scholar
  13. 13.
    M. Panneerselvam and K.J. Rao, Chem. Mater. 15, 2247 (2003).CrossRefGoogle Scholar
  14. 14.
    T. Ebadzadeh, J. Alloys Compd. 489, 125 (2010).CrossRefGoogle Scholar
  15. 15.
    C.A. Pickles, Miner. Eng. 22, 1102 (2009).CrossRefGoogle Scholar
  16. 16.
    T.Q.X. Le, S.H. Ju, L.M. Lu, S. Koppala, and J.H. Peng, Dry. Technol. (2018).  https://doi.org/10.1080/07373937.2018.1436558.CrossRefGoogle Scholar
  17. 17.
    X.J. Guo, D.Z. Wang, and W.A. Ding, Nonferr. Met. 47, 55 (1995).Google Scholar
  18. 18.
    X. Liu, F. Huang, P.Y. Zhao, and B.L. Jiao, Light Met. 3, 19 (2013).Google Scholar
  19. 19.
    Y.Y. Wang, Adv. Mater. Res. 233–235, 1262 (2011).CrossRefGoogle Scholar
  20. 20.
    Y.Y. Wang, T.A. Zhang, X. Chen, and L. Bao, Chin. J. Process Eng. 02, 317 (2007).Google Scholar
  21. 21.
    T.Q.X. Le, S.H. Ju, S. Koppala, J.H. Peng, B. Pan, L.B. Zhang, Q. Wang, and X.T. Li, J. Alloys Compd. 749, 652 (2018).CrossRefGoogle Scholar
  22. 22.
    T.Q.X. Le, S.H. Ju, J.H. Peng, L.M. Lu, L.B. Zhang, S.X. Wang, and L.X. Zhou, J. Microwave Power E 4, 217 (2016).Google Scholar
  23. 23.
    N.B. Zhang, Z.Y. Li, W. Liu, and W. Xiao, Light Met. 7, 7 (2010).Google Scholar
  24. 24.
    B.Q. Zhang and Z.F. Qiu, Chin. J. Nonferr. Met. 5, 11 (2001).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Thiquynhxuan Le
    • 1
    • 2
  • Shaohua Ju
    • 2
    • 3
  • A. V. Ravindra
    • 2
    • 3
  • Xiteng Li
    • 2
    • 3
  • Qi Wang
    • 2
    • 3
  1. 1.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  3. 3.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations