, Volume 71, Issue 2, pp 764–771 | Cite as

CFD Modeling of Alumina Diffusion and Distribution in Aluminum Smelting Cells

  • Xiaozhen Liu
  • Youjian Yang
  • Zhaowen WangEmail author
  • Wenju Tao
  • Tuofu Li
  • Zhibin Zhao
CFD Modeling and Simulation in Materials Processing


With the increase in line current and decrease in bath volume of aluminum smelting cells, alumina distribution is critical to cell performance. A VOF-DPM model with four flat anodes was developed to simulate the distribution, and can track both the gas–bath interface and dispersed alumina particles. The results show that alumina is more likely to accumulate in the anode gaps, and from there travels to side channels. More than 20 min are needed for the fed alumina to reach the concentration equilibrium; the alumina gradient in the transversal direction of the model exceeds that in the longitudinal direction.



The authors appreciate the financial supports provided by the National Natural Science Foundation of China (Nos. 51434005, 51529401, 51804069 and 51474060) and the Fundamental Research Funds for Northeastern University (No. N172503015).


  1. 1.
    S. Zhan, M. Li, J. Zhou, J. Yang, and Y. Zhou, Appl. Therm. Eng. 73, 805 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Thonstad, F. Nordmo, and J.B. Paulsen, Metall. Trans. 3, 407 (1972).CrossRefGoogle Scholar
  3. 3.
    R.K. Jain, S.B. Tricklebank, and B.J. Welch, in Light Metals 1983, (TMS, Warrendale, PA, 1983), pp. 609–622.Google Scholar
  4. 4.
    S. Rolseth, R. Hovland, and O. Kobbeltvedt, in Light Metals 1994, (TMS, Warrendale, PA, 1994) pp. 351–357.Google Scholar
  5. 5.
    J. Thonstad and Y. Liu, in Light Metals 1981, (TMS, Warrendale, PA, 1981), pp. 303–312.Google Scholar
  6. 6.
    V. Dassylva-Raymond, L.I. Kiss, S. Poncsak, P. Chartrand, J. Bilodeau, and S. Guérard, in Light Metals 2014, (TMS, Warrendale, PA, 2014), pp. 603–608.Google Scholar
  7. 7.
    M.A. Stam, M.P. Taylor, J.J.J. Chen, A. Mulder, and R. Rodrigo, in Light Metals 2008, (TMS, Warrendale, PA 2008), pp. 309–314.Google Scholar
  8. 8.
    D. Whitfield, M. Skyllas-Kazacos, B.J. Welch, and F.S. McFadden, Light Metals 2004, (TMS, Warrendale, PA, 2004), pp. 249–255.Google Scholar
  9. 9.
    O. Kobbeltvedt, Distribution of alumina in the electrolyte of industrial aluminum cells. Ph.D. Thesis, Norwegian University of Science and Technology (1997).Google Scholar
  10. 10.
    M.L. Walker, J.M. Purdie, N.S. Wai-Poi, B.J. Welch, and J.J.J. Chen, in Light Metals 1995, (TMS, Warrendale, PA, 1995), pp. 752–759.Google Scholar
  11. 11.
    D.C. Chesonis and A.F. LaCamera, in Light Metals 1990, (TMS, Warrendale, PA, 1990), pp. 211–220.Google Scholar
  12. 12.
    O. Kobbeltvedt and B.P. Moxnes, in Light Metals 1997, (TMS, Warrendale, PA, 1997), pp. 369–376.Google Scholar
  13. 13.
    Y. Yang, B. Gao, X. Liu, Z. Wang, Z. Shi, X. Hu, W. Tao, F. Liu, and J. Yu, in Light Metals 2018, (TMS, Warrendale, PA, 2018), pp. 507–513.Google Scholar
  14. 14.
    J.M. Purdie, M.M. Bilek, M.P. Taylor, W.D. Zhang, B.J. Welch, and J.J.J. Chen, in Light Metals 1993, (TMS, Warrendale, PA, 1993), pp. 355–360.Google Scholar
  15. 15.
    Y. Feng, M.A. Cooksey, and M.P. Schwarz, in Light Metals 2010, (TMS, Warrendale, PA, 2010), pp. 455–460.Google Scholar
  16. 16.
    R.V. Kaenel, J. Antille, M.V. Romerio, and O. Besson, in Light Metals 2013, (TMS, Warrendale, PA, 2013), pp. 585–590.Google Scholar
  17. 17.
    H. Zhang, S. Yang, H. Zhang, J. Li, and Y. Xu, JOM 66, 1210 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Zhan, M. Li, J. Zhou, J. Yang, and Y. Zhou, Trans. Nonferrous Met. Soc. China 25, 1648 (2015).CrossRefGoogle Scholar
  19. 19.
    K.E. Einarsrud, I. Eick, W. Bai, Y. Feng, J. Hua, and P.J. Witt, Appl. Math. Model. 44, 3 (2017).MathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Lavoie, M.P. Taylor, and J.B. Metson, Metall. Mater. Trans. B 47, 2690 (2016).CrossRefGoogle Scholar
  21. 21.
    K.E. Einarsrud, S.E. Gylver, and E. Manger, in Light Metals 2018, (TMS, Warrendale, PA, 2018), pp. 557–564.Google Scholar
  22. 22.
    L. Li, Z. Liu, M. Cao, and B. Li, JOM 67, 1459 (2015).CrossRefGoogle Scholar
  23. 23.
    J.E. Olsen and S. Cloete, in The 7th international Conference on CFD in the Minerals and process industries. CSIRO, Melbourne, Australia, 9–11 December 2009 (2009).Google Scholar
  24. 24.
    M. Sun, B. Li, L. Li, Q. Wang, J. Peng, Y. Wang, and S.C.P. Cheung, Metall. Mater. Trans. B 48, 3161 (2017).CrossRefGoogle Scholar
  25. 25.
    M.A. Cookey and W. Yang, in Light Metals 2006, (TMS, Warrendale, PA, 2006), pp. 359–365.Google Scholar
  26. 26.
    ANSYS FLUENT 15 User manual, ANSYS Inc.Google Scholar
  27. 27.
    Z. Zhao, Y. Feng, M.P. Schwarz, P.J. Witt, Z. Wang, and M. Cooksey, Metall. Mater. Trans. B 48, 1200 (2017).CrossRefGoogle Scholar
  28. 28.
    E. Dernedde and E.L. Cambridge, in Light Metals 1975, (TMS, Warrendale, PA, 1975), pp. 111–122.Google Scholar
  29. 29.
    Y. Yang, Study on the dissolution behavior of alumina in cryolite electrolyte. Ph.D. Thesis, Northeastern University (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Xiaozhen Liu
    • 1
    • 2
  • Youjian Yang
    • 1
    • 2
  • Zhaowen Wang
    • 1
    • 2
    Email author
  • Wenju Tao
    • 1
    • 2
  • Tuofu Li
    • 1
    • 2
  • Zhibin Zhao
    • 3
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Metallurgy of Multi-metallic Mineral (Northeastern University)Ministry of EducationShenyangChina
  3. 3.Shenyang Aluminum and Magnesium Engineering and Research Institute Co. Ltd.ShenyangChina

Personalised recommendations