Advertisement

JOM

pp 1–9 | Cite as

Valorization of Ferronickel Slag into Refractory Materials: Effect of Sintering Temperature

  • Foquan Gu
  • Zhiwei Peng
  • Yuanbo Zhang
  • Huimin Tang
  • Lei Ye
  • Weiguang Tian
  • Guoshen Liang
  • Joonho Lee
  • Mingjun Rao
  • Guanghui Li
  • Tao Jiang
Effective Production and Recycling of Powder Materials
  • 47 Downloads

Abstract

Preparation of refractory materials from ferronickel slag by sintering over a broad temperature range (1200°C to 1500°C) with addition of sintered magnesia was explored. The thermodynamic calculations indicated that the amounts of newly generated high-melting-point forsterite and spinel phases increase with increasing temperature. The experimental analysis demonstrated that elevating the sintering temperature promoted conversion and crystallization of forsterite and spinel phases from the original phase of the slag, with simultaneous reduction of low-melting-point enstatite. There was also rapid growth of spinel grains from about 0.5 μm to 5 μm, which should be controlled by selecting an appropriate temperature. The results showed that, by sintering the slag at 1400°C for 3 h with addition of 20 wt.% sintered magnesia, a high-quality refractory material with refractoriness of 1680°C, bulk density of 2.93 g/cm3, apparent porosity of 1.81%, and compressive strength of 166.62 MPa was obtained.

Notes

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant 51774337, the Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University) Open Fund under Grant SWMES2017-04, the Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials under Grant 17kffk11, the Innovation-Driven Program of Central South University under Grant 2016CXS021, the Shenghua Lieying Program of Central South University under Grant 502035001, and the Fundamental Research Funds for the Central Universities of Central South University under Grants 2018zzts220 and 2018zzts779.

References

  1. 1.
    J. Luo, G. Li, M. Rao, Y. Zhang, Z. Peng, Q. Zhi, and T. Jiang, JOM 67, 1966 (2015).CrossRefGoogle Scholar
  2. 2.
    G. Liu, Ferro-alloys 2, 46 (2012).Google Scholar
  3. 3.
    J. Yu, W. Wang, and L. Zhou, in 11th China Iron and Steel Annual Conference Proceedings, Eds. by The Chinese Society for Metals (Metallurgical Industry Press, Beijing, 2017) p. 1.Google Scholar
  4. 4.
    Y. Huang, Q. Wang, and M. Shi, Constr. Build. Mater. 156, 773 (2017).CrossRefGoogle Scholar
  5. 5.
    T. Yang, X. Yao, and Z. Zhang, Constr. Build. Mater. 59, 188 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Economou-Eliopoulos, R. Frei, and I. Megremi, J. Geochem. Explor. 162, 40 (2016).CrossRefGoogle Scholar
  7. 7.
    Z. Peng, F. Gu, Y. Zhang, H. Tang, W. Tian, G. Liang, M. Rao, G. Li, and T. Jiang, ACS Sustain. Chem. Eng. 6, 10536 (2018).CrossRefGoogle Scholar
  8. 8.
    A.K. Sarker, M.N.N. Khan, and P.K. Sarker, Resour. Conserv. Recy. 134, 10 (2018).CrossRefGoogle Scholar
  9. 9.
    W. Li and X. Xue, Ind. Eng. Chem. Res. 57, 4731 (2018).CrossRefGoogle Scholar
  10. 10.
    C. Han and Y. Hong, Environ. Int. 114, 288 (2018).CrossRefGoogle Scholar
  11. 11.
    S.S. Kang, K. Park, and D. Kim, Materials (Basel) 7, 7157 (2014).CrossRefGoogle Scholar
  12. 12.
    N.S. Katsiotis, P.E. Tsakiridis, D. Velissariou, M.S. Katsiotis, S.M. Alhassan, and M. Beazi, Waste Biomass Valori. 6, 177 (2015).CrossRefGoogle Scholar
  13. 13.
    A.K. Saha and P.K. Sarker, J. Clean. Prod. 162, 438 (2017).CrossRefGoogle Scholar
  14. 14.
    Y. Choi and S. Choi, Constr. Build. Mater. 99, 279 (2015).CrossRefGoogle Scholar
  15. 15.
    K. Komnitsas, D. Zaharaki, and V. Perdikatsis, J. Mater. Sci. 42, 3073 (2007).CrossRefGoogle Scholar
  16. 16.
    A. Karamanov, A. Kamusheva, D. Karashanova, B. Ranguelov, and G. Avdeev, Mater. Lett. 223, 86 (2018).CrossRefGoogle Scholar
  17. 17.
    F. Huang, Y. Liao, J. Zhou, Y. Wang, and H. Li, Sep. Purif. Technol. 156, 572 (2015).CrossRefGoogle Scholar
  18. 18.
    F. Gu, Z. Peng, Y. Zhang, H. Tang, W. Tian, G. Liang, M. Rao, G. Li, and T. Jiang, ACS Sustain. Chem. Eng. 6, 4880 (2018).CrossRefGoogle Scholar
  19. 19.
    Q. Liu, A Study on China’s Magnesia Export (Dalian: Dongbei University, 2012).Google Scholar
  20. 20.
    Q. Xue and W. Xu, Refractory Materials (Beijing: Metallurgical Industry Press, 2013).Google Scholar
  21. 21.
    R.M. Khattab, M.M.S. Wahsh, and N.M. Khalil, Mater. Chem. Phys. 166, 82 (2015).CrossRefGoogle Scholar
  22. 22.
    F. Gu, Z. Peng, Y. Zhang, H. Tang, W. Tian, G. Liang, M. Rao, G. Li, and T. Jiang, Characterization of Minerals, Metals, and Materials, ed. B. Li, J. Li, S. Ikhmayies, et al. (New York: Springer, 2018), p. 633.Google Scholar
  23. 23.
    R. Ceylantekin and C. Akse, J. Eur. Ceram. Soc. 32, 727 (2012).CrossRefGoogle Scholar
  24. 24.
    E.M.M. Ewais, A.A.M. El-Amir, D.H.A. Besisa, M. Esmat, and B.E.H. El-Anadouli, J. Alloys Compd. 691, 822 (2017).CrossRefGoogle Scholar
  25. 25.
    F. Tavangarian and R. Emadi, Powder Technol. 198, 412 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Li, A. Xu, D. He, Q. Yang, and N. Tian, Int. J. Min. Met. Mater. 20, 253 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Sagadin, S. Luidold, C. Wagner, and C. Wenzl, JOM 68, 3022 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Sinhamahapatra, H.S. Tripathi, and A. Ghosh, Ceram. Int. 42, 5148 (2016).CrossRefGoogle Scholar
  29. 29.
    J. Yuan, P. He, X. Liang, D. Jia, L. Jia, D. Cai, Z. Yang, X. Duan, S. Wang, and Y. Zhou, Ceram. Int. 44, 10047 (2018).CrossRefGoogle Scholar
  30. 30.
    D. Gruber, M. Sistaninia, C. Fasching, and O. Kolednik, J. Eur. Ceram. Soc. 36, 4301 (2016).CrossRefGoogle Scholar
  31. 31.
    National Refractory Standardization Technical Committee of China, Refractory Standards Compilation, 2nd ed., Vol. 1 (Beijing: Standards Press of China, 2002).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Foquan Gu
    • 1
  • Zhiwei Peng
    • 1
  • Yuanbo Zhang
    • 1
  • Huimin Tang
    • 1
  • Lei Ye
    • 1
  • Weiguang Tian
    • 2
  • Guoshen Liang
    • 2
  • Joonho Lee
    • 3
  • Mingjun Rao
    • 1
  • Guanghui Li
    • 1
  • Tao Jiang
    • 1
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Guangdong Guangqing Metal Technology Co. Ltd.YangjiangChina
  3. 3.Department of Materials Science and EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations