Advertisement

JOM

pp 1–8 | Cite as

The Structure of the Smelting Cell Ledge Under Variable Sidewall Heat Flow Conditions

  • Jingjing Liu
  • Shanghai Wei
  • Mark Taylor
Primary Aluminum Production Chain: Bauxite-Alumina-Electrode-Reduction
  • 23 Downloads

Abstract

The power input to most smelters has become more variable and cell voltages have been continually reduced, giving rise to bath superheat in the 3-6°C range in many cases. The effect on the structure of the ledge is now being investigated since it also impacts heat balance shifting for smelter power flexibility, which is an inevitable consequence of continental network. Shell Heat Exchanger technology has been created to achieve the heat balance shifting by regulating sidewall heat loss with low superheat and variable cell power input. This article provides new information about the structure of the ledge material under the influence of these factors and discusses the implications for future smelter operation.

Notes

Acknowledgements

MBIE funding is gratefully acknowledged for this work, under Grant UOAX1308.

References

  1. 1.
    M.P. Taylor, The influence of process dynamics on the heat balance & cell operation in electrowinning of aluminium, in Chemical & Materials Engineering, Ph.D. Thesis (The University of Auckland, Auckland, 1984).Google Scholar
  2. 2.
    M.P. Taylor and B.J. Welch, Metall. Trans. B 18, 391 (1987).CrossRefGoogle Scholar
  3. 3.
    J. Thonstad and S. Rolseth, Light Met. 1983, 415 (1983).Google Scholar
  4. 4.
    A. Solheim, Light Metals 2011, ed. S.J. Lindsay (Warrendale, PA: TMS, 2011), 381–386.Google Scholar
  5. 5.
    A. Solheim, N.H. Giskeødegård, and N.J. Holt, Light Met. 2016, 333 (2016).Google Scholar
  6. 6.
    X. Liu, Fifth Australasian Aluminium Smelter Technology Workshop. Sydney, Australia (1995).Google Scholar
  7. 7.
    M.P. Taylor, B.J. Welch, and R. McKibbin, AIChE 32, 1459 (1986).CrossRefGoogle Scholar
  8. 8.
    A. Solheim and L.I.R. Stoen, Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), 325–332.Google Scholar
  9. 9.
    A. Solheim, H. Gudbrandsen, and S. Rolseth. Light Metals 2009, ed. G. Bearne (Warrendale, PA: TMS, 2009), 411.Google Scholar
  10. 10.
    X.Y. Yan, P. Hayes, E. Jak, and S. Phil. 10th Australasian Aluminium Smelting Technology Conference, Launceston, Australia (2011).Google Scholar
  11. 11.
    A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Trans. B 45, 1232 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Poncsák, L. Kiss, R. St-Pierre, S. Guérard, and J.F. Bilodeau, Light Metals 2014, ed. J. Grandfield (Warrendale, PA: TMS, 2014), 585–589.Google Scholar
  13. 13.
    S. Poncsák, L. Kiss, A. Belley, S. Guérard, and J.F. Bilodeau, Light Metals 2015, ed. M.M. Hyland (Warrendale, PA: TMS, 2015), 655–659.CrossRefGoogle Scholar
  14. 14.
    S. Poncsák, L. Kiss, V.D. Raymond, C. Kaszás, S. Guérard, and J.F. Bilodeau, Light Metals 2016, ed. E. Williams (Warrendale, PA: TMS, 2016), 359–364.Google Scholar
  15. 15.
    S. Poncsák, L.I. Kiss, S. Guérard, and J.F. Bilodeau, Metals 7, 1 (2017).Google Scholar
  16. 16.
    T. Reek. 11th Australasian Aluminium Smelting Technology Conference. Dubai, UAE (2014).Google Scholar
  17. 17.
    H. Zhang, L. Ran, J. Liang, T. Li, K. Sun, and J. Li, Light Metals 2018, ed. O. Martin (Warrendale, PA: TMS, 2018), 587–596.CrossRefGoogle Scholar
  18. 18.
    X. Cui, H. Zhang, Zh. Zou, J. Li, Y. Lai, Y. Xu, H. Zhang, and X. Lv, Light Metals 2010, ed. J.A. Johnson (Warrendale, PA: TMS, 2010), 447–452.Google Scholar
  19. 19.
    X. Lv, Ch. Zhang, Y. Lai, Z. Tian, M. Jia, and J. Li, Light Metals 2014, ed. J. Grandfield (Warrendale, PA: TMS, 2014), 579–583.Google Scholar
  20. 20.
    B. Sachs, I. Eick, G. Bellinghausen, K. Tschöpe, and R. Jørgensen, 35th International ICOSOBA Conference, Hamburg, Germany (2017).Google Scholar
  21. 21.
    P. Lavoie, S. Namboothiri, M. Dorreen, J.J. Chen, D.P. Zeigler, and M.P. Taylor, Light Metals 2011, ed. S.J. Lindsay (Warrendale, PA: TMS, 2011), 367–374.CrossRefGoogle Scholar
  22. 22.
    S. Namboothiri, P. Lavoie, D. Cotton, and M.P. Taylor, Light Metals 2009, ed. G. Bearne (Warrendale, PA: TMS, 2009), 317–322.Google Scholar
  23. 23.
    M.P. Taylor, B.J. Welch, and J.T. Keniry, Light Metals 1983, ed. E.M. Adkins (Warrendale, PA: TMS, 1983), 437–447.Google Scholar
  24. 24.
    J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 48, 1079 (2017).CrossRefGoogle Scholar
  25. 25.
    J. Liu, M. Taylor, and M. Dorreen, Light Metals 2016, ed. E. Williams (Warrendale, PA: TMS 2016), 601–605.Google Scholar
  26. 26.
    J. Liu, M. Taylor, and M. Dorreen, IJMR 108, 507 (2017).CrossRefGoogle Scholar
  27. 27.
    J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 49, 238 (2018).CrossRefGoogle Scholar
  28. 28.
    J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 48, 3185 (2017).CrossRefGoogle Scholar
  29. 29.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, and A.D. Pelton, FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.NZ Product Accelerator, Faculty of EngineeringUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations