Skip to main content
Log in

Effect of Slag Layer on the Multiphase Interaction in a Converter

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A supersonic oxygen jet impinging onto the slag–metal interface is studied using computational fluid dynamics modeling with the aim of obtaining a better understanding of the multiphase interaction behavior in a converter. The dynamic interaction behavior as well as the effects of the slag thickness, viscosity, and surface tension are studied numerically. The results show that the geometrical dimensions of the cavity generated by the multiphase interaction decrease with increasing slag thickness. The presence of the slag layer can restrain splashing and droplet generation in the converter. However, the slag viscosity and surface tension have little effect on the momentum of the multiphase interaction, especially in the area away from the interaction zone under the present simulation conditions. The splashing behavior is not sensitive to the slag properties. The droplet generation rate changes slightly with variation of the slag viscosity and surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Higuchi and Y. Tago, Tetsu-to-Hagané 86, 654 (2000).

    Article  Google Scholar 

  2. I. Roderick and L. Guthrie, Metal. Mater. Trans. B 35, 417 (2004).

    Article  Google Scholar 

  3. K. Chattopadhyay, Iron Steel Technol. 11, 277 (2014).

    Google Scholar 

  4. L.L. Cao, Y.N. Wang, Q. Liu, and X.M. Feng, ISIJ Int. 58, 573 (2018).

    Article  Google Scholar 

  5. J. Szekely, JOM 42, 16 (1990).

    Article  Google Scholar 

  6. J. Szekely and S. Asai, Metall. Trans. 5, 463 (1974).

    Article  Google Scholar 

  7. A. Chatterjee, N.O. Lindfors, and J.A. Wester, Ironmak. Steelmak. 3, 21 (1976).

    Google Scholar 

  8. Y. Tago and Y. Higuchi, ISIJ Int. 43, 209 (2003).

    Article  Google Scholar 

  9. H.-J. Odenthal, U. Falkenreck, and J. Schlüter, in Paper presented at the European Conference on Computational Fluid Dynamics, TU Delft, The Netherlands (2006).

  10. W.J. Wang, Z.F. Yuan, H. Matsuura, H.X. Zhao, C. Dai, and F. Tsukihashi, ISIJ Int. 50, 491 (2010).

    Article  Google Scholar 

  11. F. Qian, R. Mutharasan, and B. Farouk, Metal. Mater. Trans. B 27, 911 (1996).

    Article  Google Scholar 

  12. O. Olivares, A. Elias, R. Sánchez, M. Díaz-Cruz, and R.D. Morales, Steel Res. Int. 73, 44 (2002).

    Article  Google Scholar 

  13. A.V. Nguyen and G.M. Evans, Appl. Math. Model. 30, 1472 (2006).

    Article  Google Scholar 

  14. M. Ersson, L. Höglund, A. Tilliander, L. Jonsson, and P. Jönsson, ISIJ Int. 48, 147 (2008).

    Article  Google Scholar 

  15. M. Ersson, A. Tilliander, L. Jonsson, and P. Jönsson, ISIJ Int. 48, 377 (2008).

    Article  Google Scholar 

  16. M. Asai, H. Nijo, and K. Ito, ISIJ Int. 49, 178 (2009).

    Article  Google Scholar 

  17. D. Muñoz-Esparza, J.M. Buchlin, K. Myrillas, and R. Berger, Appl. Math. Model. 36, 2687 (2012).

    Article  MathSciNet  Google Scholar 

  18. Y. Doh, P. Chapelle, and A. Jardy, Metal. Mater. Trans. B 44, 653 (2013).

    Article  Google Scholar 

  19. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Metall. Mater. Trans. B 46, 1494 (2015).

    Article  Google Scholar 

  20. N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki, Steel Res. Int. 82, 587 (2011).

    Article  Google Scholar 

  21. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Can. Metall. Q. 53, 340 (2014).

    Article  Google Scholar 

  22. L.L. Cao, Q. Liu, Z. Wang, and N. Li, Ironmak. Steelmak. 45, 239 (2018).

    Article  Google Scholar 

  23. S. Sabah and G. Brooks, Ironmak. Steelmak. 43, 473 (2016).

    Article  Google Scholar 

  24. Subagyo, G. Brooks, K.S. Coley, and G.A. Irons, ISIJ Int. 43, 983 (2003).

    Article  Google Scholar 

  25. N. Dogan, G. Brooks, and M.A. Rhamdhani, ISIJ Int. 49, 24 (2009).

    Article  Google Scholar 

  26. M. Alam, J. Naser, and G. Brooks, Metal. Mater. Trans. B 41, 636 (2010).

    Article  Google Scholar 

  27. M. Alam, J. Naser, G. Brooks, and A. Fontana, ISIJ Int. 52, 1026 (2012).

    Article  Google Scholar 

  28. B.K. Rout, G. Brooks, M. Subagyo, A. Rhamdhani, and Z. Li, Metal. Mater. Trans. B 47, 3350 (2016).

    Article  Google Scholar 

  29. G. Turner and S. Jahanshahi, Trans. Iron Steel Inst. Jpn. 27, 734 (1987).

    Article  Google Scholar 

  30. S. Sabah and G. Brooks, Metall. Mater. Trans. B 47, 458 (2016).

    Article  Google Scholar 

  31. S.W. Welch and J. Wilson, J. Comput. Phys. 160, 662 (2000).

    Article  Google Scholar 

  32. J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).

    Article  MathSciNet  Google Scholar 

  33. B.E. Launder and D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).

    Article  Google Scholar 

  34. L.L. Cao, Y.N. Wang, L. Qing, L.F. Sun, S.S. Liao, W.D. Guo, K.S. Ren, B. Blanpain, and M.X. Guo, in Paper presented at the 147th Annual Meeting & Exhibition (2018), pp. 353–364.

  35. M.S. Lee, S.L. O’Rourke, and N.A. Molloy, Scand. J. Metall. 32, 281 (2003).

    Article  Google Scholar 

  36. M. Lee, V. Whitney, and N. Molloy, Scand. J. Metall. 30, 330 (2001).

    Article  Google Scholar 

  37. M.Y. Zhu, Modern Metallurgical Technology (Beijing: Metallurgical Industry Press, 2007), pp. 169–170.

    Google Scholar 

  38. F.R. Cheslak, J.A. Nicholls, and M. Sichel, J. Fluid Mech. 36, 55 (1969).

    Article  Google Scholar 

  39. S. Sabah and G. Brooks, ISIJ Int. 54, 836 (2014).

    Article  Google Scholar 

  40. S.C. Koria and K.W. Lange, Metal. Mater. Trans. B 15, 109 (1984).

    Article  Google Scholar 

  41. F. Memoli, C. Mapelli, P. Ravanelli, and M. Corbella, ISIJ Int. 44, 1342 (2004).

    Article  Google Scholar 

  42. X. Zhou, M. Ersson, L. Zhong, and P. Jönsson, Metal. Mater. Trans. B 47, 434 (2016).

    Article  Google Scholar 

  43. K. Ito and R. Fruehan, Metal. Mater. Trans. B 20, 509 (1989).

    Article  Google Scholar 

  44. K. Ito and R. Fruehan, Metal. Mater. Trans. B 20, 515 (1989).

    Article  Google Scholar 

  45. R. Jiang and R. Fruehan, Metal. Mater. Trans. B 22, 481 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Education of the People’s Republic of China (No. 20120006110036) and Jiangxi Provincial Department of Science and Technology (20171ACE50020) is gratefully acknowledged. Lingling Cao thanks the China Scholarship Council (201600090009) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Liu, Q., Sun, J. et al. Effect of Slag Layer on the Multiphase Interaction in a Converter. JOM 71, 754–763 (2019). https://doi.org/10.1007/s11837-018-3243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3243-z

Navigation