Enhancement of Rheological and Mechanical Properties of Bitumen by Polythiophene Doped with Nano Fe3O4
- 63 Downloads
Abstract
Bitumen has remarkable chemical and mechanical properties as a construction and insulating material. In this research, bitumen reinforced with polythiophene, which is doped with Fe3O4 nanoparticles, was produced by the vacuum shock technique. Samples were prepared at various filler loadings to investigate their rheological and mechanical properties. Characteristics of the samples were evaluated using a dynamic shear rheometer and various empirical rheological tests including the softening point, penetration, and reversibility. The results indicated that the synthesized nanoparticles have good compatibility and interaction with the molten phase of bitumen. On the other hand, modification of bitumen has led to significant improvement in the compound shear modulus and resistance against deformation, while it has hindered fatigue damage and improved the softening point, penetration, and reversibility.
Notes
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.S.G. Jahromi and A. Khodaii, Constr. Build. Mater. 23, 2894 (2009).CrossRefGoogle Scholar
- 2.J. Read and D. Whiteoak, The Shell Bitumen Handbook, 5th ed. (London: Thomas Telford, 2003), p. 231.Google Scholar
- 3.T.J. Pinnavaia and G.W. Beall, Polymer-Clay Nanocomposites (Chichester: John Wiley, 2000), p. 21.Google Scholar
- 4.A. Kebritchi, A. Jalali-Arani, and A.A. Roghanizad, Constr. Build. Mater. 25, 2875 (2011).CrossRefGoogle Scholar
- 5.M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci., Part A: Polym. Chem. 44, 5283 (2006).CrossRefGoogle Scholar
- 6.J.L. Goodrich, J.E. Goodrich, and W.J. Kari, Asphalt Composition Tests: Their Application and Relation to Field Performance, Transportation Research Record 1096 (Washington, DC: TRB, National Research Council, 1986) pp. 146–167.Google Scholar
- 7.E.J. Van Assen and M. Van de Ven, Review of South African Bitumen Specification to Take Cognisance of Compositional Balance Relative to Long-Term Behaviour (Chennai: Department of Transport, 1996).Google Scholar
- 8.S. Dessouky, C. Reyes, M. Ilias, D. Contreras, and A. Papagiannakis, Constr. Build. Mater. 25, 2785 (2011).CrossRefGoogle Scholar
- 9.M. Garcia-Morales, P. Partal, F. Navarro, and C. Gallegos, Fuel 85, 936 (2006).CrossRefGoogle Scholar
- 10.J.G. Speight, The Chemistry and Technology of Petroleum, 5th ed. (Boca Raton: CRC Press, 2014), pp. 187–240.Google Scholar
- 11.S.S. Galooyak, B. Dabir, A.E. Nazarbeygi, and A. Moeini, Constr. Build. Mater. 24, 300 (2010).CrossRefGoogle Scholar
- 12.N. Baldino, D. Gabriele, F.R. Lupi, C.O. Rossi, P. Caputo, and T. Falvo, Constr. Build. Mater. 40, 397 (2013).CrossRefGoogle Scholar
- 13.G. Martinez-Arguelles, F. Giustozzi, M. Crispino, and G.W. Flintsch, Constr. Build. Mater. 72, 423 (2014).CrossRefGoogle Scholar
- 14.C. Wang, P. Wang, Y. Li, and Y. Zhao, Constr. Build. Mater. 80, 195 (2015).CrossRefGoogle Scholar
- 15.E. Garilli, F. Autelitano, C. Godenzoni, A. Graziani, and F. Giuliani, Constr. Build. Mater. 125, 352 (2016).CrossRefGoogle Scholar
- 16.L.G.A. Farias, J.L. Leitinho, B.D.C. Amoni, J.B. Bastos, J.B. Soares, S.D.A. Soares, and H.B. de Sant’Ana, Constr. Build. Mater. 125, 873 (2016).CrossRefGoogle Scholar
- 17.D. Zhang, H. Zhang, C. Zhu, and C. Shi, Constr. Build. Mater. 144, 423 (2017).CrossRefGoogle Scholar
- 18.C. Zhu, H. Zhang, C. Shi, and S. Li, Constr. Build. Mater. 146, 30 (2017).CrossRefGoogle Scholar
- 19.A.K. Das and M. Panda, Constr. Build. Mater. 149, 724 (2017).CrossRefGoogle Scholar
- 20.O. Xu, P.R. Rangaraju, S. Wang, and F. Xiao, Constr. Build. Mater. 154, 841 (2017).CrossRefGoogle Scholar
- 21.S.M. Mousavi, M. Farsi, and M. Azizi, J. Appl. Polym. Sci. 132, 1 (2015).CrossRefGoogle Scholar
- 22.S. Wu, J. Han, L. Pang, M. Yu, and T. Wang, Constr. Build. Mater. 33, 133 (2012).CrossRefGoogle Scholar
- 23.Z. Feng, J. Yu, and S. Wu, Constr. Build. Mater. 29, 591 (2012).CrossRefGoogle Scholar
- 24.H. Wu, L. Li, J. Yu, S. Xu, and D. Xie, Constr. Build. Mater. 111, 565 (2016).CrossRefGoogle Scholar
- 25.J. Li, J. Yu, S. Wu, L. Pang, S. Amirkhanian, and M. Zhao, Constr. Build. Mater. 152, 832 (2017).CrossRefGoogle Scholar
- 26.M.N. Siddiqui, M. Mansha, U. Mehmood, N. Ullah, A.F. Al-Betar, and A.A. Al-Saadi, Dyes Pigm. 141, 406 (2017).CrossRefGoogle Scholar
- 27.I. Osaka, G. Sauve, R. Zhang, T. Kowalewski, and R.D. McCullough, Adv. Mater. 19, 4160 (2007).CrossRefGoogle Scholar
- 28.M.L. Braunger, A. Barros, M. Ferreira, and C.A. Olivati, Electrochim. Acta 165, 1 (2015).CrossRefGoogle Scholar
- 29.P. Sivaraman, S.P. Mishra, A.R. Bhattacharrya, A. Thakur, K. Shashidhara, and A.B. Samui, Electrochim. Acta 69, 134 (2012).CrossRefGoogle Scholar
- 30.C. Zhang, H. Zhang, B. Du, R. Hou, and S. Guo, J. Colloid Interface Sci. 368, 97 (2012).CrossRefGoogle Scholar
- 31.A. Gök, M. Omastová, and A.G. Yavuz, Synth. Met. 157, 23 (2007).CrossRefGoogle Scholar
- 32.R. Elsenbaumer, K. Jen, G. Miller, and L. Shacklette, Synth. Met. 18, 277 (1987).CrossRefGoogle Scholar
- 33.M.R. Chandra, P.S.P. Reddy, T.S. Rao, S. Pammi, K.S. Kumar, K.V. Babu, C.K. Kumar, and K. Hemalatha, J. Phys. Chem. Solids 105, 99 (2017).CrossRefGoogle Scholar
- 34.D.E. Motaung, G.F. Malgas, C.J. Arendse, S.E. Mavundla, C.J. Oliphant, and D. Knoesen, Sol. Energy Mater. Sol. Cells 93, 1674 (2009).CrossRefGoogle Scholar
- 35.R.D. McCullough, Adv. Mater. 10, 93 (1998).CrossRefGoogle Scholar
- 36.J.J. Tindale, H. Holm, M.S. Workentin, and O.A. Semenikhin, J. Electroanal. Chem. 612, 219 (2008).CrossRefGoogle Scholar
- 37.A. Abd-El-Aziz, S. Dalgakiran, I. Kucukkaya, and B. Wagner, Electrochim. Acta 89, 445 (2013).CrossRefGoogle Scholar
- 38.F.M. Winnik, Chem. Rev. 93, 587 (1993).CrossRefGoogle Scholar
- 39.E. González-Juárez, M. Güizado-Rodríguez, V. Barba, M. Melgoza-Ramírez, M. Rodríguez, G. Ramos-Ortíz, and J. Maldonado, J. Mol. Struct. 1103, 25 (2016).CrossRefGoogle Scholar
- 40.S.A. Hashemi and S.M. Mousavi, Compos. A 90, 457 (2016).CrossRefGoogle Scholar
- 41.S.A. Hashemi, S.M. Mousavi, M. Arjmand, N. Yan, and U. Sundararaj, Polym. Compos. 39, E1139 (2018).CrossRefGoogle Scholar
- 42.S.A. Hashemi, S.M. Mousavi, R. Faghihi, M. Arjmand, S. Sina, and A.M. Amani, Radiat. Phys. Chem. 146, 77 (2018).CrossRefGoogle Scholar
- 43.S.M. Mousavi, S.A. Hashemi, M. Arjmand, A.M. Amani, F. Sharif, and S. Jahandideh, ChemistrySelect 3, 7200 (2018).CrossRefGoogle Scholar
- 44.A. Subhy, Constr. Build. Mater. 156, 28 (2017).CrossRefGoogle Scholar
- 45.X. Lu and U. Isacsson, Constr. Build. Mater. 11, 23 (1997).CrossRefGoogle Scholar
- 46.D.A. Anderson, D.W. Christensen, H.U. Bahia, R. Dongre, M. Sharma, C.E. Antle, and J. Button, Strategic Highway Research Program, National Research Council. Report No. SHRP-A-369 (1994).Google Scholar
- 47.G. Airey, Rheological characteristics of polymer modified and aged bitumens. Dissertation, University of Nottingham (1997).Google Scholar
- 48.S. Shen, G.D. Airey, S.H. Carpenter, and H. Huang, Road Mater. Pavement Des. 7, 47 (2006).CrossRefGoogle Scholar
- 49.W. Van Dijk and W. Visser, Energy approach to fatigue for pavement design, in Proceedings of the Association of Asphalt Paving Technologists Proceedings (1977), pp. 1–40.Google Scholar
- 50.K. Ghuzlan and S. Carpenter, Transp. Res. Rec. 1, 141 (2000).CrossRefGoogle Scholar
- 51.M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugaiah, Nat. Mater. 2, 107 (2003).CrossRefGoogle Scholar
- 52.Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng, Procedia Eng. 27, 632 (2012).CrossRefGoogle Scholar
- 53.F. Entezari Juybari, A. Kamran-Pirzaman, and M. Ghorbani, Inorg. Nano Met. Chem. 47, 121 (2017).CrossRefGoogle Scholar
- 54.S.N.A. Baharin, N. Muhamad Sarih, and S. Mohamad, Polymers 8, 117 (2016).CrossRefGoogle Scholar
- 55.R. Liu and Z. Liu, Chin. Sci. Bull. 54, 2028 (2009).Google Scholar