Skip to main content
Log in

Characterization of Cavity Oscillation and Splashing Distribution Under Excitation by Bottom Gas Blowing in a Steelmaking Converter

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The cavity oscillation and splash characteristics dominate the operational stability and refining efficiency in converter steelmaking processes. These characteristics under excitation by bottom gas blowing in a steelmaking converter were evaluated using a developed filter-based multifluid model. The cavity oscillation mechanism was examined by reference to cavity surface flows, and its characteristics were quantified in terms of frequency and amplitude using the fast Fourier transform approach. The splashing distribution describing the splashing droplet size and rate under various operating conditions was clarified. The results reveal that the cavity oscillation and splashing distribution are mainly controlled by the cavity surface flow velocity, which itself is influenced by the operating conditions. Use of bottom gas blowing intensifies the cavity oscillation in terms of both frequency and amplitude, and increases the splashing rate, but decreases the droplet size by accelerating the cavity surface flow. The lance height plays a dominant role in forming the cavity oscillation and controlling the splashing distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.Y. Hwang and G.A. Irons, Metall. Mater. Trans. B 42, 575 (2011).

    Article  Google Scholar 

  2. S. Sabah and G. Brooks, ISIJ Int. 54, 836 (2014).

    Article  Google Scholar 

  3. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou, Ind. Eng. Chem. Res. 55, 3630 (2016).

    Article  Google Scholar 

  4. M. Lee, S.L. O’Rourke, and N. Molloy, Scand. J. Metall. 32, 281 (2003).

    Article  Google Scholar 

  5. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, JOM 68, 3126 (2018).

    Article  Google Scholar 

  6. K.D. Peaslee and D.G.C. Robertson, EPD Congress, TMS (PA: Warrendale, 1994).

    Google Scholar 

  7. N. Standish and Q.L. He, ISIJ Int. 29, 455 (1989).

    Article  Google Scholar 

  8. M.J. Luomala, T.M.J. Fabiritius, and J.J. Härkki, ISIJ Int. 44, 809 (2004).

    Article  Google Scholar 

  9. Q.L. He and N. Standish, ISIJ Int. 30, 305 (1990).

    Article  Google Scholar 

  10. T.M.J. Fabritius, P.T. Mure, and J.J. Härkki, ISIJ Int. 43, 1177 (2003).

    Article  Google Scholar 

  11. T.M.J. Fabritius, P.T. Kurkinen, P.T. Mure, and J.J. Härkki, Iron Steelmak 32, 113 (2005).

    Article  Google Scholar 

  12. H.J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter, Metall. Mater. Trans. B 41, 396 (2010).

    Article  Google Scholar 

  13. S.T. Johansen, J.Y. Wu, and W. Shyy, Int. J. Heat Fluid Flow 25, 10 (2004).

    Article  Google Scholar 

  14. M.M. Li, L. Li, Q. Li, and Z.S. Zou, JOM 70, 2051 (2018).

    Article  Google Scholar 

  15. C.W. Hirt and B.D. Nichols, J. Comput. Phys. 39, 981 (2011).

    Google Scholar 

  16. J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).

    Article  MathSciNet  Google Scholar 

  17. M. Sommerfield, Numer. Methods Multiph. Flows ASME 91, 11 (1990).

    Google Scholar 

  18. H.J. Odenthal, U. Falkenreck, and J. Schlüter, ECCOMAS CFD (TU: Delft, 2006).

    Google Scholar 

  19. B. Deo and R. Boom, Fundamentals of Steelmaking Metallurgy (Upper Saddle River: Prentice Hall, 1993).

    Google Scholar 

  20. FLUENT, 14.0 Manual (Canonsburg: Ansys Inc, 2011).

    Google Scholar 

  21. E.O. Brigham, The Fast Fourier Transform and Its Application (Englewood Cliffs: Prentice Hall, 1940).

    Google Scholar 

  22. F. Oeters, Metallurgy of Steelmaking (Berlin: Springer-Verlag, 1997).

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for financial support from the Fundamental Research Funds for the Central Universities of China (N172503014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, Q., Zou, Z. et al. Characterization of Cavity Oscillation and Splashing Distribution Under Excitation by Bottom Gas Blowing in a Steelmaking Converter. JOM 71, 729–736 (2019). https://doi.org/10.1007/s11837-018-3203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3203-7

Navigation