, Volume 71, Issue 1, pp 40–47 | Cite as

Influence of Coil Configuration and Operating Conditions on Heat Transfer in Inductively Heated Risers

  • Gregory M. PooleEmail author
  • Michael R. CoxIII
CFD Modeling and Simulation in Materials Processing


Electromagnetic (EM) induction heating of open top risers represents an energy-efficient method to preserve mass feeding whilst allowing for the use of a smaller riser and thus higher casting yield. Numerical simulation results for an ill-designed, concentric riser and casting assembly predicting the EM field characteristics and solidification behavior in such systems are presented herein. A vector potential formulation of the EM field was used and solved using a hybrid control volume/integral method, featuring temperature-dependent electrical conductivity. The heat transfer equation with phase change was also solved using the control volume technique. The computed results showed that use of induction heating could shift the hot spot from the casting to the riser. It was also found that use of higher coil frequencies produced a guard heating effect at the periphery of the riser, which was then applied using a new L-shaped coil geometry.


  1. 1.
    J.F. Schifo and J.T. Radia, Theoretical/Best Practice Energy Use in Metalcasting Operations (Keramida Environmental, 2004), Accessed 15 Sept 2015.
  2. 2.
    K. Kermeli, R. Deuchler, E. Worrell, and E. Masanet, Energy Efficiency and Cost Saving Opportunities for Metal Casting: An ENERGY STAR Guide for Energy and Plant Managers (US Department of Energy, 2016), Accessed 15 Sept 2015.
  3. 3.
    N. Chvorinov, Giesserei 27, 177 (1940).Google Scholar
  4. 4.
    R.L. Lewis, Optimization of Casting Rigging Design, MS Thesis, The Ohio State University, 1983.Google Scholar
  5. 5.
    I. Ciobanu, S. Munteanu, A. Crisan, T. Bedo, and V. Monescu, Int. J. Metalcast. 8, 63 (2014).CrossRefGoogle Scholar
  6. 6.
    R.A. Flinn, Fundamentals of Metal Casting (Boston: Addison-Wesley, 1963).Google Scholar
  7. 7.
    H.F. Bishop, E.T. Myskowski, and W.S. Pellini, AFS Trans. 63, 271 (1955).Google Scholar
  8. 8.
    H.D. Merchant, in AFS Transaction Proceedings of the 63rd Annual Meeting, p. 13 (1959).Google Scholar
  9. 9.
    S. Kossy and R.F. Boddey, Exothermically Reacting Sleeve for Risers, US Patent 2,591,105, 1952, Accessed 23 June 2018.
  10. 10.
    A.C. Midea, Foundry Manag. Technol. 127, 50 (1999).Google Scholar
  11. 11.
    Z. Ignaszak and P. Popielarski, Mater. Sci. Forum 514, 1438 (2006).CrossRefGoogle Scholar
  12. 12.
    R.A. Hardin, T.J. Williams, and C. Beckermann, Riser Sleeve Properties for Steel Castings and the Effect of Sleeve Type on Casting Yield, MS Thesis, University of Iowa, 2013.Google Scholar
  13. 13.
    T.J. Williams, Determination of Effective Riser Sleeve Thermophysical Properties for Simulation and Analysis of Riser Sleeve Performance, MS Thesis, University of Iowa, 2016.Google Scholar
  14. 14.
    R.C. Aufderheide, R.E. Showman, J. Close, and E.J. Zins, in AFS Transaction Proceedings of the 106th Annual Congress, p. 917 (2002).Google Scholar
  15. 15.
    S. Zinn and S.L. Semiatin, Elements of Inducation Heating (Materials Park: ASM International, 1988).Google Scholar
  16. 16.
    C.J. Xu, Y.X. Zeng, Z.L. Wang, J. Li, S.L. Li, and X.J. Zhang, Metallurgija 55, 593 (2016).Google Scholar
  17. 17.
    S. Tonseth, Making Greener Ship Propellers (ScienceNordic, 2014), Accessed 11 Oct 2016.
  18. 18.
    S. Takahashi, Y. Nakagawa, and Y. Hosoda, Method for Heating a Riser of Molten Refractory Material, US Patent 4,460,524, 1984.Google Scholar
  19. 19.
    K. Hirayama, Y. Matsubara, A. Sakai, T. Sugiyama, K. Yokoo, T. Yamashita, T. Hirayama, H. Sugihara, K. Matsuo, and A. Yokoi, Metal Casting Method, Japanese Patent 4,494,868, 1997.Google Scholar
  20. 20.
    G. Poole and L. Nastac, J. Manuf. Sci. Prod. 15, 13 (2015).Google Scholar
  21. 21.
    M.R. Cox and G.M. Poole, Numerical simulation of electromagnetic and heat transfer phenomena in inductively heated risers.CFD Modeling and Simulation in Materials Processing 2018, ed. L. Nastac, K. Pericleous, A. Sabau, L. Zhang, and B. Thomas (New York: Springer, 2018), pp. 53–62.CrossRefGoogle Scholar
  22. 22.
    J.L. Meyer, N. El-Kaddah, and J. Szekely, IEEE Trans. Magn. 23, 1806 (1987).CrossRefGoogle Scholar
  23. 23.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (New York: Hemisphere, 1980).zbMATHGoogle Scholar
  24. 24.
    J. Szekely and N.J. Themelis, Rate Phenomena in Process Metallurgy (New York: Wiley, 1971).Google Scholar
  25. 25.
    A. De and T. DebRoy, Sci. Techol. Weld Join 11, 143 (2006).CrossRefGoogle Scholar
  26. 26.
    N.V. Kopchenova and I.A. Maron, Computational Mathematics (Moscow: Mir, 1972), pp. 63–67.Google Scholar
  27. 27.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead, 2002), pp. 50–53.Google Scholar
  28. 28.
    S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, J. Mater. Sci. 26, 4643 (2001).CrossRefGoogle Scholar
  29. 29.
    Zircar Refractory Composites, RSLE-501 Cylinders (December 2017), Accessed 03 Mar 2018.
  30. 30.
    F.P. Incropera and D.P. Dewitt, Fundamentals of Heat Transfer, 2nd ed. (New York: Wiley, 1981).Google Scholar
  31. 31.
    W. Kurz and D.J. Fisher, Fundamentals of Solidification (Rockport: Trans Tech Publications, 1986).Google Scholar
  32. 32.
    T. Campanella, C. Charbon, and M. Rappaz, Scr. Mater. 49, 1029 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South AlabamaMobileUSA

Personalised recommendations