Advertisement

JOM

, Volume 71, Issue 1, pp 124–130 | Cite as

Low-Cost Getters for Gaseous Chromium Removal in High-Temperature Electrochemical Systems

  • Ashish Aphale
  • Boxun Hu
  • Prabhakar Singh
Advancement in Solid Oxide Fuel Cell Research
  • 58 Downloads

Abstract

Electrochemical performance degradation of the air electrode due to the presence of trace levels of gaseous chromium impurities, a critical issue in high-temperature electrochemical systems, contributes to long-term irreversible performance instabilities. We report a low-cost getter comprised of SrO and NiO to capture extrinsic chromium impurities present in ambient air. Ceramic honeycomb-supported getters have been tested for 500 h under SOFC cathode exposure conditions and characterized by scanning electron microscopy–energy dispersive X-ray spectrometry and focused ion beam–transmission electron microscopy. Chemical and structural analyses show that gaseous chromium predominantly concentrates within ~ 4–5 mm at the air inlet, leaving only the remainder of the getter free of chromium. Chromium capture mechanisms are proposed and discussed based on experimental findings and thermodynamic calculations.

Notes

Acknowledgements

The authors acknowledge the financial support from the US Department of Energy and National Energy Technological Laboratory under federal Grant DE-FE 0023385. Technical discussion with Dr. Patcharin Burke (NETL) is gratefully acknowledged. The authors also acknowledge Dr. Lichun Zhang and Ms. Chiying Liang for their help with SEM–EDS and FIB-TEM experiments.

References

  1. 1.
    M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M.K. Ullah, and A. Usman, Appl. Sci. 6, 75 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, and J. Zhang, Chem. Soc. Rev. 46, 1427 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Gupta, M.K. Mahapatra, and P. Singh, Mater. Sci. Eng. R Rep. 90, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    A.B. Stambouli and E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002).CrossRefGoogle Scholar
  5. 5.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Singh, S.L. Suib, M.B. Venkataraman, V. Manthina, M.K. Mahapatra, and U. Pasaogullari, High temperature electrochemical systems and related methods; US 2016/0072143 A1, 2014.Google Scholar
  7. 7.
    National Ambient Air Quality Standards (NAAQS) | Technology Transfer Network | US EPA. US EPA, OAR, Off. Air Qual. Plan. Stand.Google Scholar
  8. 8.
    J. Żurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser, and W.J. Quadakkers, Oxid. Met. 63, 401 (2005).CrossRefGoogle Scholar
  9. 9.
    B. Hu, M.K. Mahapatra, M. Keane, H. Zhang, and P. Singh, J. Power Sources 268, 404 (2014).CrossRefGoogle Scholar
  10. 10.
    A.J. Schuler, Z. Wuillemin, A. Hessler-Wyser, and J. Van Herle, ECS Trans. 25, 2845 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, and T. Saitoh, J. Power Sources 55, 73 (1995).CrossRefGoogle Scholar
  12. 12.
    A.N. Aphale, C. Liang, B. Hu, and P. Singh, Solid Oxide Fuel Cells Lifetime and Reliability: Critical Challenges Fuel Cells, ed. N. Brandon (Cambridge: Academic Press, 2017), p. 102.Google Scholar
  13. 13.
    H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, and H. Kishimoto, J. Alloys Compd. 452, 41 (2008).CrossRefGoogle Scholar
  14. 14.
    L. Ge, A. Verma, R. Goettler, D. Lovett, R.K.S. Raman, and P. Singh, Metall. Mater. Trans. A 44, 193 (2013).CrossRefGoogle Scholar
  15. 15.
    B.B. Ebbinghaus, Combust. Flame 93, 119 (1993).CrossRefGoogle Scholar
  16. 16.
    E.H. Copland, D.L. Myers, E.J. Opila, and N.S. Jacobson, in 199th Electrochemical Society Meeting (Electrochemical Society, Inc., Washington, DC, 2001).Google Scholar
  17. 17.
    P. Singh and S.D. Vora, Ceram. Eng. Sci. Proc. 26, 99 (2008).CrossRefGoogle Scholar
  18. 18.
    K. Chen, S.-S. Liu, P. Guagliardo, M.R. Kilburn, M. Koyama, and S.P. Jiang, J. Electrochem. Soc. 162, 1282 (2015).CrossRefGoogle Scholar
  19. 19.
    W.B. Jensen, Chem. Rev. 78, 1 (1978).CrossRefGoogle Scholar
  20. 20.
    H. Yokokawa, Annu. Rev. Mater. Res. 33, 581 (2003).CrossRefGoogle Scholar
  21. 21.
    B.A. Pint, K.A. Unocic, and K.A. Terrani, Mater. High Temp. 32, 28 (2015).CrossRefGoogle Scholar
  22. 22.
    S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater Sci. 53, 775 (2008).CrossRefGoogle Scholar
  23. 23.
    N.J. Magdefrau, L. Chen, E.Y. Sun, J. Yamanis, and M. Aindow, J. Power Sources 227, 318 (2013).CrossRefGoogle Scholar
  24. 24.
    S.R. Akanda, M.E. Walter, N.J. Kidner, and M.M. Seabaugh, Thin Solid Films 565, 237 (2014).CrossRefGoogle Scholar
  25. 25.
    H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai, J. Power Sources 182, 400 (2008).CrossRefGoogle Scholar
  26. 26.
    P. Singh and N. Birks, Oxid. Met. 12, 23 (1978).CrossRefGoogle Scholar
  27. 27.
    K. Chen, N. Ai, K.M. O’Donnell, and S.P. Jiang, Phys. Chem. Chem. Phys. 17, 4870 (2015).CrossRefGoogle Scholar
  28. 28.
    Y.D. Zhen, A.I.Y. Tok, S.P. Jiang, and F.Y.C. Boey, J. Power Sources 170, 61 (2007).CrossRefGoogle Scholar
  29. 29.
    C. Liang, B. Hu, A.N. Aphale, M.B. Venkataraman, M.K. Mahapatra, and P. Singh, ECS Trans. 75, 57 (2016).CrossRefGoogle Scholar
  30. 30.
    A.N. Aphale, M.A. Uddin, B. Hu, S.J. Heo, J. Hong, and P. Singh, J. Electrochem. Soc. 165, 635 (2018).CrossRefGoogle Scholar
  31. 31.
    M. Ončák, R. Włodarczyk, and J. Sauer, J. Phys. Chem. C 120, 24762 (2016).CrossRefGoogle Scholar
  32. 32.
    D. Halwidl, B. Stoger, W. Mayr-Schmolzer, J. Pavelec, D. Fobes, J. Peng, Z. Mao, and G.S. Parkinson, et al., Nat. Mater. 15, 450 (2015).CrossRefGoogle Scholar
  33. 33.
    M.A. Uddin, C.J. Banas, C. Liang, U. Pasaogullari, K.P. Recknagle, B.J. Koeppel, J.W. Stevenson, and P. Singh, ECS Trans. 78, 1063 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Center for Clean Energy EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations