Advertisement

JOM

, Volume 71, Issue 1, pp 23–33 | Cite as

CFD Simulations of Gas–Liquid Multiscale Flow Characteristics in an Aluminum Electrolysis Cell with Population Balance Model: Effect of Anode Slot Configuration

  • Shuiqing Zhan
  • Yujie Huang
  • Zhentao Wang
  • Changfeng Li
  • Jianhong Yang
  • Junfeng Wang
CFD Modeling and Simulation in Materials Processing
  • 102 Downloads

Abstract

Numerical simulations of the effects of different anode slot configurations on the gas–liquid multiscale flow characteristics in an aluminum electrolysis cell have been conducted based on a recently developed mathematical model. The results clearly showed that use of anode slots can significantly promote the bubble evacuation behavior and thus affect the overall flow pattern. Both the gas volume fraction and bubble size decreased obviously when transversal or especially longitudinal slots were used. Moreover, the greater the number of both kinds of slot, the lower the mentioned parameters. With increasing anode slot width, the gas volume fraction decreased slightly while there was almost no effect on the bubble size distribution (BSD). Reducing the anode slot height caused a higher gas volume fraction. Both the overall gas volume fraction and BSD in industrial-scale cells are apparently influenced by two large circulation vortices caused by electromagnetic forces (EMFs).

Notes

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (51704126), Natural Science Foundation of Jiangsu Province (BK20170551, BK20171301), Natural Science Foundation of Higher Education Institutions of Jiangsu Province (17KJB450001), Foundation of Senior Talent of Jiangsu University (2015JDG158), and “Qing Lan” Project Foundation of Jiangsu Province. Our special thanks are due to the anonymous reviewers for insightful suggestions on this work.

References

  1. 1.
    K.E. Einarsrud, I. Eick, W. Bai, Y.Q. Feng, J.S. Hua, and P.J. Witt, Appl. Math. Model. 44, 3 (2017).MathSciNetCrossRefGoogle Scholar
  2. 2.
    B.J. Moxnes, B.E. Aga, and H. Skaar, Light Metals 1998, ed. H. Kvande (San Francisco, : TMS, 1998), pp. 247–255.Google Scholar
  3. 3.
    X.W. Wang, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 539–544.Google Scholar
  4. 4.
    K.A. Rye, E. Myrvold, and I. Solberg, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 1998), pp. 293–298.Google Scholar
  5. 5.
    K. Vekony and L.I. Kiss, Metall. Mater. Trans. B 41, 1006 (2010).CrossRefGoogle Scholar
  6. 6.
    M.A. Cooksey and W. Yang, Light Metals 2006, ed. T.J. Galloway (San Antonio: TMS, 2006), pp. 359–365.Google Scholar
  7. 7.
    Y.Q. Xue, N.J. Zhou, and S.Z. Bao, Chin. J. Nonferrous Metals 16, 1823 (2006).Google Scholar
  8. 8.
    M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y.S. Morsi, Metall. Mater. Trans. B 44, 1155 (2013).CrossRefGoogle Scholar
  9. 9.
    R.G. Aaberg, V. Ranum, and K. Williamson, Light Metals 1997, ed. R. Huglen (Orlando: TMS, 1997), pp. 341–346.Google Scholar
  10. 10.
    Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, and X.W. Hu, Metall. Mater. Trans. B 47, 1962 (2016).CrossRefGoogle Scholar
  11. 11.
    Y.Q. Feng, M.A. Cooksey, and M.P. Schwarz, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 339–344.Google Scholar
  12. 12.
    J. Li, Y.J. Xu, H.L. Zhang, and Y.Q. Lai, Int. J. Multiph. Flow 37, 46 (2011).CrossRefGoogle Scholar
  13. 13.
    Y.Q. Feng, M.P. Schwarz, W. Yang, and M.A. Cooksey, Metall. Mater. Trans. B 46, 1959 (2015).CrossRefGoogle Scholar
  14. 14.
    Q. Wang, B.K. Li, and N.X. Feng, Metall. Mater. Trans. B 45, 272 (2014).CrossRefGoogle Scholar
  15. 15.
    S.Q. Zhan, Z.T. Wang, J.H. Yang, R.J. Zhao, C.F. Li, J.F. Wang, and J.M. Zhou, Ind. Eng. Chem. Res. 56, 8649 (2017).CrossRefGoogle Scholar
  16. 16.
    W. Yang and M.A. Cooksey, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 451–456.Google Scholar
  17. 17.
    D.S. Severo, V. Gusberti, E.C.V. Pinto, and R.R. Moura, Light Metals, ed. M. Sørlie (Orlando: TMS, 2007), pp. 287–292.Google Scholar
  18. 18.
    S. Yang, H.L. Zhang, Y.J. Xu, H.H. Zhang, Z. Zou, J. Li, and Y.Q. Lai, J. Cent. South Univ. Technol. (Chinese) 43, 4617 (2012).Google Scholar
  19. 19.
    S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and Y.W. Zhou, J. Cent. South Univ. Technol. 22, 2482 (2015).CrossRefGoogle Scholar
  20. 20.
    S.Q. Zhan, J.H. Yang, Z.T. Wang, R.J. Zhao, J. Zheng, and J.F. Wang, JOM 69, 1589 (2017).CrossRefGoogle Scholar
  21. 21.
    S.Q. Zhan, J.F. Wang, Z.T. Wang, and J.H. Yang, JOM 70, 229 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shuiqing Zhan
    • 1
  • Yujie Huang
    • 1
  • Zhentao Wang
    • 1
  • Changfeng Li
    • 1
  • Jianhong Yang
    • 2
  • Junfeng Wang
    • 1
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Material Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations