Advertisement

JOM

pp 1–7 | Cite as

Comparison of Natural and Nano-synthetically-Produced Hydroxyapatite Powder

  • Ali Sabea Hammood
  • Sora Saleem Hassan
  • Mohammed Talib Alkhafagy
Materials in Nanomedicine and Bioengineering

Abstract

Hydroxyapatite (HAp) is a bioactive material that forms the main mineral part of teeth, hard tissues, and bone in humans. The goal of the present study is to prepare hydroxyapatite from bio-waste materials such as fish bone and bovine femur bone at different calcination temperatures, selecting the optimal calcination temperatures and then comparing these with commercial nano-HAp. The HAp was synthesized from the bio-waste materials by a calcination process in a thermal dry and fire furnace with different calcination temperatures, heating rates and cooling rates all carefully controlled. The best results were obtained at 950°C since, at this temperature, the Ca/P ratio reached 1.6589 for fish bone and 1.7058 for bovine femur bone, which is close to the commercial stoichiometric nano-HAp ratio of 1.67.

Notes

Acknowledgements

The authors gratefully acknowledge the staff of the Materials Research Center, Ministry of Science and Technology, Iraq, for the characterization facility provided there, and Professor Nader Pravin-Amirkabir University of Technology, Iran, for his revision of this paper.

References

  1. 1.
    G. Gergely, F. Wéber, I. Lukács, A.L. Tóth, Z.E. Horváth, J. Mihály, and C. Balázsi, Ceram. Int. 36, 803 (2010).CrossRefGoogle Scholar
  2. 2.
    G. Ciobanu, M. Bargan, and C. Luca, JOM 67, 2534 (2015).CrossRefGoogle Scholar
  3. 3.
    H. Cao and X. Liu, Int. J. Appl. Ceram. Technol. 10, 1 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Ibrahim, X. Li, Y. Zhou, Y. Huang, W. Chen, H. Wang, and J. Li, Int. J. Mol. Sci. 16, 7960 (2015).CrossRefGoogle Scholar
  5. 5.
    P.V. Dennymol and R. Joseph, Int. J. Sci. Technol. 2, 179 (2014).CrossRefGoogle Scholar
  6. 6.
    N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, and H.Y. Kim, J. Mater. Prod. Technol. 209, 3408 (2009).CrossRefGoogle Scholar
  7. 7.
    J. Venkatesan and S.K. Kim, J. Mater 3, 4761 (2010).CrossRefGoogle Scholar
  8. 8.
    H.L. Jaber, A.S. Hammood, and N. Pravin, J. Aust. Ceram. Soc. 54, 1 (2018).CrossRefGoogle Scholar
  9. 9.
    W. Khoo, F.M. Nor, H. Ardhyananta, and D. Kurniawan, Procedia Manuf. 2, 196 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A.D. Carlos, and B. León, Mater. Sci. Eng., C 32, 478 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Haberko, M.M. Bucko, B. Miecznik, M. Haberko, and W. Mozgawa, J. Eur. Ceram. Soc. 26, 537 (2006).CrossRefGoogle Scholar
  12. 12.
    G.M. Poralan Jr., J.E. Gambe, E.M. Alcantara, and R.M. Vequizo, IOP Conference Series: Materials Science and Engineering 79, 012028 (2015).CrossRefGoogle Scholar
  13. 13.
    B.D. Cullity and S.R. Stock, Third Edition, Pearson (2001).Google Scholar
  14. 14.
    A.L. Giraldo-Betancur, D.G. Espinosa-Arbelaez, A. del Real-López, B.M. Millan-Malo, E.M. Rivera-Muñoz, E. Gutierrez-Cortez, P. Pineda-Gomez, S. Jimenez-Sandoval, and M.E. Rodriguez-García, Curr. Appl. Phys. 13, 1383 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ali Sabea Hammood
    • 1
  • Sora Saleem Hassan
    • 1
  • Mohammed Talib Alkhafagy
    • 2
  1. 1.Department of Material Engineering, Faculty of EngineeringUniversity of KufaKufaIraq
  2. 2.Faculty of DentistryUniversity of KufaKufaIraq

Personalised recommendations