JOM

, Volume 71, Issue 1, pp 78–87

# Mathematical Modeling of Initial Solidification and Slag Infiltration at the Meniscus of Slab Continuous Casting Mold

• Xubin Zhang
• Wei Chen
• Piotr Roman Scheller
• Ying Ren
• Lifeng Zhang
CFD Modeling and Simulation in Materials Processing

## Abstract

In the current study, a mathematical model was established to investigate meniscus solidification and slag infiltration in the mold. The model considered the two-dimensional steel-slag-air three-phase fluid flow, heat transfer, solidification of the steel and mold oscillation. The calculated solidification shell was compared with measured hook lines to validate the model. The initial solidification and slag infiltration at the meniscus were revealed during an oscillation cycle. The influence of casting parameters on initial solidification was studied. Through simulations, the liquid slag flowed into the gap between the steel shell and copper plate during the positive strip stage, while it flowed out of the gap during the negative strip stage. The solidification depth of the meniscus from the solidification tip to the inner mold face reduced with the increase of casting temperature and casting speed and the decrease of water flow rate in the mold and oscillation amplitude.

## Notes

### Acknowledgement

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51725402 and 51504020), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2 and 2015021642901), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

## References

1. 1.
E. Takeuchi, Ph.D. Thesis, UBC (1984).Google Scholar
2. 2.
E. Takeuchi and J. Brimacombe, Metall. Trans. B 15, 493 (1984).
3. 3.
P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana, Metall. Mater. Trans. B 43, 109 (2012).
4. 4.
J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, Metall. Mater. Trans. A 37, 1597 (2006).
5. 5.
E. Takeuchi and J. Brimacombe, Metall. Mater. Trans. B 16, 605 (1985).
6. 6.
S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi, ISIJ Int. 30, 310 (1990).
7. 7.
J. Sengupta, H.J. Shin, B. Thomas, and S.H. Kim, Acta Mater. 54, 1165 (2006).
8. 8.
H. Yamamura, Y. Mizukami, and K. Misawa, ISIJ Int. 36, S223 (1996).
9. 9.
C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco and J.L. Arana, in: Proceedings of the Iron & Steel Technology Conference and Exposition (AISTech), pp. 1017–28 (2006).Google Scholar
10. 10.
P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana, ISIJ Int. 50, 1797 (2010).
11. 11.
P.E. Ramirez-Lopez, Ph.D. Thesis, Imperial College London (2010).Google Scholar
12. 12.
P.E. Ramirez-Lopez, U. Sjöström, P.D. Lee, K.C. Mills, B. Jonsson and J. Janis, in: Proceedings of the Iron & Steel Technology Conference and Exposition (AISTech), pp. 1259–1268 (2012).Google Scholar
13. 13.
A. Jonayat and B.G. Thomas, Metall. Mater. Trans. B 45, 1842 (2014).
14. 14.
P. Lyu, W. Wang, and H. Zhang, Metall. Mater. Trans. B 48, 247 (2017).
15. 15.
H. Zhang and W. Wang, Metall. Mater. Trans. B 48, 779 (2017).
16. 16.
X. Zhang, W. Chen, and L. Zhang, China Foundry 14, 416 (2017).
17. 17.
Y. Meng and B.G. Thomas, Metall. Mater. Trans. B 34, 685 (2003).
18. 18.
S. Zhang, Q. Wang, S. He, and Q. Wang, Metall. Mater. Trans. B 49, 2038 (2018).
19. 19.
K. Schwerdtfeger and H. Sha, Metall. Mater. Trans. B 31, 813 (2000).
20. 20.
A. Cramb and F. Mannion, in: Steelmaking Proceedings, pp. 349–359 (1985).Google Scholar
21. 21.
G.G. Lee, H.J. Shin, S.H. Kim, S.K. Kim, W.Y. Choi, and B.G. Thomas, Ironmaking Steelmaking 36, 39 (2009).