Advertisement

JOM

pp 1–9 | Cite as

Fabrication of Ag/La(OH)3 Nanorod Framework Composites Through Dealloying for CO Oxidation

  • Xiangyang Li
  • Lanjie Niu
  • Xiaolong Zhang
  • Dong Duan
  • Kun Li
  • Zhanbo Sun
Advanced Nanocomposite Materials: Structure-Property Relationships
  • 20 Downloads

Abstract

Ag/La(OH)3 nanorod framework composites were fabricated by dealloying melt-spun Al-La-Ag alloys for CO oxidation. After the removal of Al from the precursory alloys, La(OH)3 nanorods bonded with each other to form a novel three-dimension (3D) architecture with nanopores. When the dealloyed samples were calcined at 300°C, Ag nanoparticles (NPs) were in situ supported on the surface of the nanorods and simultaneously contact interfaces were generated between the Ag NPs and the La(OH)3 nanorods. The large specific surface areas, unique 3D framework structure and active OH radicals were believed to contribute to the improvement of the catalytic activity for CO oxidation. The catalytic performance of Ag/La(OH)3 composite was highly dependent on the Ag content and calcination temperature. CO oxidation studies showed that the nanorod composite calcined at 300°C exhibited higher activity for CO oxidation in comparison with the uncalcined sample and pure La(OH)3 nanorods. The Ag/La(OH)3 nanorod framework should be a promising catalyst for CO catalytic oxidation owing to the combination of novel nanostructures and functionalized particles.

Notes

Acknowledgement

This study has been financially supported by the National Natural Science Foundation of China (Grant Nos. 51371135, 51771141).

Supplementary material

11837_2018_3176_MOESM1_ESM.pdf (669 kb)
Supplementary material 1 (PDF 668 kb)

References

  1. 1.
    L.Q. Qwabe, V.D.B.C. Dasireddy, S. Singh, and H.B. Friedrich, Int. J. Hydrog. Energy 41, 2144 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Royer and D. Duprez, ChemCatChem 3, 24 (2011).CrossRefGoogle Scholar
  3. 3.
    J.R. Gaudet, A.D.L. Riva, E.J. Peterson, T. Bolin, and A.K. Datye, ACS Catal. 3, 846 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Shinjoh, Catal. Surv. Asia 13, 184 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, and J.I. Mizuki, Catal. Today 117, 321 (2006).CrossRefGoogle Scholar
  6. 6.
    V.V. Dutov, G.V. Mamontov, V.I. Zaikovskii, and O.V. Vodyankina, Catal. Today 278, 150 (2016).CrossRefGoogle Scholar
  7. 7.
    S. Bao, N. Yan, X. Shi, R. Li, and Q. Chen, Appl. Catal. A Gen. 487, 189 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Zhang, S. Cheng, W. Zhang, C. Zhang, N.E. Drewett, X. Wang, D. Wang, S.J. Yoo, J.G. Kim, and W. Zheng, Ind. Eng. Chem. Res. 56, 11042 (2017).CrossRefGoogle Scholar
  9. 9.
    Z. Qu, F. Yu, X. Zhang, Y. Wang, and J. Gao, Chem. Eng. J. 229, 522 (2013).CrossRefGoogle Scholar
  10. 10.
    E. Kolobova, A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Bogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova, and V.C. Corberan, Fuel 188, 121 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, D. Widmann, F. Lehnert, D. Gu, F. Schüth, and R.J. Behm, Angew. Chem. Int. Ed. 56, 9597 (2017).CrossRefGoogle Scholar
  12. 12.
    N. Yousefi, M. Pazouki, M. Alizadeh, and F.A. Hesari, Synth. React. Inorg. Met. Org. Chem. 46, 464 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Pestryakov, E. Kolobova, and V. Lunin, Int. J. Nanotechnol. 13, 200 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Li, P. Guan, F. Yu, W. Li, and X. Xie, Nanomaterials 7, 205 (2017).CrossRefGoogle Scholar
  15. 15.
    G. Fan, F. Li, D.G. Evans, and X. Duan, Chem. Soc. Rev. 43, 7040 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Haruta, J. New Mater. Electrochem. Syst. 7, 163 (2004).Google Scholar
  17. 17.
    F. Song and X. Hu, J. Am. Chem. Soc. 136, 16481 (2014).CrossRefGoogle Scholar
  18. 18.
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, and O.S. Joo, J. Power Sources 188, 338 (2009).CrossRefGoogle Scholar
  19. 19.
    F. Song and X. Hu, Nat. Commun. 5, 4477 (2014).CrossRefGoogle Scholar
  20. 20.
    M. Méndez, J.J. Carvajal, L.F. Marsal, P. Salagre, M. Aguiló, F. Díaz, P. Formentín, J. Pallarès, and Y. Cesteros, J. Nanopart. Res. 15, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Xiao, W. Zhang, J. Yu, Y. Sun, Y. Zhang, and F. Dong, Catal. Sci. Technol. 6, 5003 (2016).CrossRefGoogle Scholar
  22. 22.
    P.S. Kohli, M. Kumar, K.K. Raina, and M.L. Singla, J. Mater. Sci. Mater. Electron. 23, 2257 (2012).CrossRefGoogle Scholar
  23. 23.
    J.G. Kang, Y.I. Kim, D.W. Cho, and Y. Sohn, Mater. Sci. Semicond. Process. 40, 737 (2015).CrossRefGoogle Scholar
  24. 24.
    F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, and J. Ma, Phys. Chem. Chem. Phys. 17, 16058 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Kang, M. Sun, and A. Li, Catal. Lett. 142, 1498 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Zhu, Z. Gui, and Y. Ding, Mater. Lett. 62, 2373 (2008).CrossRefGoogle Scholar
  27. 27.
    B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen, Z. Shi, and Y. Dong, Nanotechnology 15, 1273 (2004).CrossRefGoogle Scholar
  28. 28.
    H. Yang, H. Qiu, J.Q. Wang, J. Huo, X. Wang, R.W. Li, and J. Wang, J. Alloys Compd. 703, 461 (2017).CrossRefGoogle Scholar
  29. 29.
    T. Song, M. Yan, and M. Qian, Corros. Sci. 134, 78 (2018).CrossRefGoogle Scholar
  30. 30.
    H.J. Qiu, J.Q. Wang, P. Liu, Y. Wang, and M.W. Chen, Corros. Sci. 96, 196 (2015).CrossRefGoogle Scholar
  31. 31.
    N. Yu, T. Wang, C. Nie, L. Sun, J. Li, and H. Geng, JOM 68, 391 (2016).CrossRefGoogle Scholar
  32. 32.
    N. Yu, L. Jiang, H. Hou, X. Chen, J. Li, H. Geng, and D. Zhao, JOM 69, 1027 (2017).CrossRefGoogle Scholar
  33. 33.
    M.Y.N.K.C. Kima, W.T. Kimb, and D.H. Kima, Corros. Sci. 126, 381 (2017).CrossRefGoogle Scholar
  34. 34.
    X. Zhang, K. Li, W. Shi, C. Wei, X. Song, S. Yang, and Z. Sun, Nanotechnology 28, 045602 (2016).CrossRefGoogle Scholar
  35. 35.
    T. Kou, C. Si, J. Pinto, C. Ma, and Z. Zhang, Nanoscale 9, 8007 (2017).CrossRefGoogle Scholar
  36. 36.
    R. Fiorenza, C. Crisafulli, G.G. Condorelli, F. Lupo, and S. Scirè, Catal. Lett. 145, 1691 (2015).CrossRefGoogle Scholar
  37. 37.
    M. Ozawa, R. Onoe, and H. Kato, J. Alloys Compd. 408, 556 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Neumann and D. Walter, Thermochim. Acta 445, 200 (2006).CrossRefGoogle Scholar
  39. 39.
    M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, and A.E. Gunnæs, J. Electron. Spectrosc. 184, 399 (2011).CrossRefGoogle Scholar
  40. 40.
    H.J. Qiu, L. Peng, X. Li, H.T. Xu, and Y. Wang, Corros. Sci. 92, 16 (2015).CrossRefGoogle Scholar
  41. 41.
    M. Jung and B. Mishra, J. Sustain. Metall. 2, 1 (2016).CrossRefGoogle Scholar
  42. 42.
    H. Senoh, M. Ueda, H. Inoue, N. Furukawa, and C. Iwakura, J. Alloys Compd. 266, 111 (1998).CrossRefGoogle Scholar
  43. 43.
    J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (New York: McGraw-Hill Book, 1999).Google Scholar
  44. 44.
    X. Zhang, G. Li, X. Song, S. Yang, and Z. Sun, RSC Adv. 7, 32442 (2017).CrossRefGoogle Scholar
  45. 45.
    E. Füglein and D. Walter, Zeitschrift fur anorganische und allgemeine Chemie 632, 2154 (2006).CrossRefGoogle Scholar
  46. 46.
    D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta, J. Catal. 177, 1 (1998).CrossRefGoogle Scholar
  47. 47.
    T. Takei, I. Okuda, K.K. Bando, T. Akita, and M. Haruta, Chem. Phys. Lett. 493, 207 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic PhysicsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Institute of Electromechanical Information TechnologyXi’anPeople’s Republic of China
  3. 3.Department of Engineering MechanicsShijiazhuang Tiedao UniversityShijiazhuangPeople’s Republic of China
  4. 4.Fengfan Co., Ltd.BaodingPeople’s Republic of China

Personalised recommendations