, Volume 71, Issue 1, pp 103–108 | Cite as

Energetic Ion Irradiation-Induced Disordered Nanochannels for Fast Ion Conduction

  • Ritesh SachanEmail author
  • Matthew F. Chisholm
  • Xin Ou
  • Yanwen Zhang
  • William J. Weber
Advancement in Solid Oxide Fuel Cell Research


Atomically disordered oxides are seen as suitable candidate for fast oxygen conduction due to their remarkable enhancement in oxygen diffusivity compared with ordered oxides. In particular, disordered derivatives of pyrochlore-structured oxides (A2B2O7) are seen as an interesting prospect due to the intrinsic existence of oxygen vacancies in their lattice. Using energetic ion irradiation, we demonstrated fabrication of structurally disordered nanoscale channels in A2B2O7 (A = Gd, Yb; B = Ti, Zr) that act as selective pathways for fast oxygen conduction. Atomic-level characterization revealed that the amorphous core and surrounding defect-fluorite phase in the nanochannels exhibited distorted and differently coordinated Ti-O polyhedra, with very similar electronic structure. The formation of defect-fluorite structure is facilitated by a decrease in the difference between the ionic radii of A- and B-site cations in the lattice.



R.S. acknowledges the National Academy of Sciences (NAS), USA, for the award of an NRC research fellowship. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under Contract No. DE-AC05-00OR22725. We acknowledge that the 55-MeV I ion irradiation was performed at the Ion Beam Center of Helmholtz-Zentrum Dresden-Rossendorf.


  1. 1.
    H. Tuller, Springer Handbook of Electronic and Photonic Materials, ed. S. Kasap and P. Capper (New York: Springer, 2007), pp. 213–228.Google Scholar
  2. 2.
    H.L. Tuller, J. Phys. Chem. Solids 55, 1393 (1994).CrossRefGoogle Scholar
  3. 3.
    T.J. Pennycook, M.J. Beck, K. Varga, M. Varela, S.J. Pennycook, and S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010).CrossRefGoogle Scholar
  4. 4.
    H.L. Tuller, Solid State Ionics 131, 143 (2000).CrossRefGoogle Scholar
  5. 5.
    H.Y. Xiao, L.M. Wang, X.T. Zu, J. Lian, and R.C. Ewing, J. Phys. Condens. Matter 19, 346203 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, and K.E. Sickafus, Solid State Ionics 140, 201 (2001).CrossRefGoogle Scholar
  7. 7.
    R. Sachan, V.R. Cooper, B. Liu, D.S. Aidhy, B.K. Voas, M. Lang, X. Ou, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, J. Phys. Chem. C 121, 975 (2017).CrossRefGoogle Scholar
  8. 8.
    D.S. Aidhy, R. Sachan, E. Zarkadoula, O. Pakarinen, M.F. Chisholm, Y. Zhang, and W.J. Weber, Sci. Rep. 5, 16297 (2015).CrossRefGoogle Scholar
  9. 9.
    P.K. Moon and H.L. Tuller, Solid State Ionics 28, 470 (1988).CrossRefGoogle Scholar
  10. 10.
    M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, and R.C. Ewing, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 2951 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Lang, F. Zhang, J. Zhang, J. Wang, B. Schuster, C. Trautmann, R. Neumann, U. Becker, and R.C. Ewing, Nat. Mater. 8, 793 (2009).CrossRefGoogle Scholar
  12. 12.
    R. Sachan, E. Zarkadoula, M. Lang, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, Sci. Rep. 6, 27196 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Sachan, O.H. Pakarinen, P. Liu, M.K. Patel, M.F. Chisholm, Y. Zhang, X.L. Wang, and W.J. Weber, J. Appl. Phys. 117, 135902 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Sachan, Y. Zhang, X. Ou, C. Trautmann, M.F. Chisholm, and W.J. Weber, J. Mater. Res. 32, 928 (2017).CrossRefGoogle Scholar
  15. 15.
    S.L. Daraszewicz and D.M. Duffy, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1646 (2011).CrossRefGoogle Scholar
  16. 16.
    F. Studer, M. Hervieu, J.M. Costantini, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. Sect. B 122, 449 (1997).CrossRefGoogle Scholar
  17. 17.
    D.M. Duffy, N. Itoh, A.M. Rutherford, and A.M. Stoneham, J. Phys. Condens. Matter 20, 082201 (2008).CrossRefGoogle Scholar
  18. 18.
    R. Sachan, M.W. Ullah, M.F. Chisholm, W.J. Weber, J. Liu, P. Zhai, P. Kluth, C. Trautmann, H. Bei, and Y. Zhang, Mater. Des. 150, 1 (2018).CrossRefGoogle Scholar
  19. 19.
    C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, and L. Wang, Sci. Rep. 6, 19994 (2016).CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, and W.J. Weber, Nat. Commun. 6, 8049 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Xue, E. Zarkadoula, R. Sachan, C. Ostrouchov, P. Liu, X.L. Wang, S. Zhang, T.S. Wang, and W.J. Weber, Curr. Opin. Solid State Mater. Sci. 21, 285 (2017).CrossRefGoogle Scholar
  22. 22.
    W.J. Weber, E. Zarkadoula, O.H. Pakarinen, R. Sachan, M.F. Chisholm, P. Liu, H. Xue, K. Jin, and Y. Zhang, Sci. Rep. 5, 7726 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Xue, E. Zarkadoula, R. Sachan, Y. Zhang, C. Trautmann, and W.J. Weber, Acta Mater. 150, 351 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Zhang, M. Lang, R.C. Ewing, R. Devanathan, W.J. Weber, and M. Toulemonde, J. Mater. Res. 25, 1344 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Shamblin, M. Feygenson, J. Neuefeind, C.L. Tracy, F. Zhang, S. Finkeldei, D. Bosbach, H. Zhou, R.C. Ewing, and M. Lang, Nat. Mater. 15, 507 (2016).CrossRefGoogle Scholar
  26. 26.
    R. Sachan, B. Liu, D. Aidhy, Y. Zhang, M.F. Chisholm, and W.J. Weber, Microsc. Microanal. 21, 1333 (2015).CrossRefGoogle Scholar
  27. 27.
    K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Hartmann, Science 289, 748 (2000).CrossRefGoogle Scholar
  28. 28.
    R. Sachan, E. Zarkadoula, X. Ou, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, ACS Appl. Mater. Interfaces 10, 16731 (2018).CrossRefGoogle Scholar
  29. 29.
    L. Minervini, R.W. Grimes, and K.E. Sickafus, J. Am. Ceram. Soc. 83, 1873 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Materials Science DivisionArmy Research OfficeResearch Triangle ParkUSA
  2. 2.Material Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  4. 4.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations