Advertisement

JOM

pp 1–9 | Cite as

Effects of Temperature Ramping Ageing on Mechanical Properties and Microstructure of Al-4.11Zn-1.77Mg Alloy

  • F. Shi
  • C. C. Wang
  • X. Y. Liu
  • X. Wang
  • J. Huang
  • D. M. Jiang
  • M. Wu
  • Z. C. Zhang
Aluminum: New Alloys and Heat Treatment
  • 30 Downloads

Abstract

The influence of temperature ramping ageing treatment on the microstructure and mechanical properties of Al-Zn-Mg alloy was investigated. When the final temperature was higher than 180°C, the hardness of the alloy improved with increase of the ramping rate. It increased and then decreased with increase of the ramping rate when the final temperature ranged from 180°C to 200°C. The tensile strength and electrical conductivity of the alloy after aging were improved as compared with the T6 state. As the ramping rate was increased and the final temperature was decreased, the distributed grain-boundary η-phase became continuous, and the size and spacing of η decreased, improving the resistance to stress corrosion of the alloy. These results indicate that temperature ramping ageing can improve the mechanical properties, corrosion resistance, and production efficiency of Al-4.11Zn-1.77Mg alloy with less time and energy consumption.

Notes

Acknowledgements

The authors gratefully acknowledge sponsorship from the National Natural Science Foundation of China (Nos. 51574147, 51790481) and Liaoning Provincial Natural Science Foundation of China (No. 201602474).

References

  1. 1.
    M. Song and K.H. Chen, J. Mater. Sci. 43, 5265 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Cai and G.J. Cheng, JOM 59, 58 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Buha, R.N. Lumley, and A.G. Crosky, Mater. Sci. Eng. A 492, 1 (2008).CrossRefGoogle Scholar
  4. 4.
    G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Trans. Nonferrous Met. Soc. China 22, 803 (2012).CrossRefGoogle Scholar
  5. 5.
    K.H. Rendigs, Mater. Sci. Forum 242, 11 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Yadollahpour, H. Hosseini-Toudeshky, and F. Karimzadeh, JOM 68, 1446 (2016).CrossRefGoogle Scholar
  7. 7.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Mater. Sci. Eng. A 280, 102 (2000).CrossRefGoogle Scholar
  8. 8.
    J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng, Mater. Charact. 60, 1334 (2009).CrossRefGoogle Scholar
  9. 9.
    D.K. Xu, N. Birbilis, and P.A. Rometsch, Corros. Sci. 54, 17 (2012).CrossRefGoogle Scholar
  10. 10.
    X. Qi, J.R. Jin, C.L. Dai, W.J. Qi, W.Z. He, and R.G. Song, Materials 9, 884 (2016).CrossRefGoogle Scholar
  11. 11.
    J.L. He, D.T. Zhang, W.W. Zhang, C. Qiu, and W. Zhang, Materials 10, 1193 (2017).CrossRefGoogle Scholar
  12. 12.
    K.R. Prasanta, M.M. Ghosh, and K.S. Ghosh, J. Mater. Eng. Perform. 24, 2792 (2015).CrossRefGoogle Scholar
  13. 13.
    G. Sha and A. Cerezo, Acta Mater. 52, 4503 (2004).CrossRefGoogle Scholar
  14. 14.
    B.L. Ou, J. Yang, and C. Yang, Mater. Trans. JIM 41, 783 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjonnes, Mater. Sci. Eng. A 270, 55 (1999).CrossRefGoogle Scholar
  16. 16.
    A. Deschamps, F. Livet, and Y. Brechet, Acta Mater. 47, 281 (1998).CrossRefGoogle Scholar
  17. 17.
    S. Li, H.G. Dong, L. Shi, P. Li, and F. Ye, Corros. Sci. 123, 243 (2017).CrossRefGoogle Scholar
  18. 18.
    D. Wang and Z.Y. Ma, J. Alloys Compd. 469, 445 (2009).CrossRefGoogle Scholar
  19. 19.
    C. Feng, Z.Y. Liu, A.L. Ning, Y.B. Liu, and S.M. Zeng, Trans. Nonferrous Met. Soc. China 16, 1163 (2006).CrossRefGoogle Scholar
  20. 20.
    N.Q. Chinh, J. Lendvai, D.H. Ping, and K. Hono, J. Alloys Compd. 378, 52 (2004).CrossRefGoogle Scholar
  21. 21.
    B.L. Ou, J.G. Yang, and M.Y. Wei, Metall. Mater. Trans. A 38, 1760 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Yang and B.L. Ou, Scand. J. Metall. 30, 158 (2001).CrossRefGoogle Scholar
  23. 23.
    H.E. Hu and X.Y. Wang, Metals 6, 79 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Chen, K. Chen, G. Peng, L. Jia, and P. Dong, Mater. Des. 35, 93 (2012).CrossRefGoogle Scholar
  25. 25.
    G.F. Li, X.M. Zhang, P.H. Li, and J.H. You, Trans. Nonferrous Met. Soc. China 20, 935 (2010).CrossRefGoogle Scholar
  26. 26.
    G. Silva, B. Rivolta, and U. Derudi, J. Mater. Eng. Perform. 22, 210 (2013).CrossRefGoogle Scholar
  27. 27.
    A.F. Oliveira, M.C. Barros, K.R. Cardoso, and D.N. Travessa, Mater. Sci. Eng. A 379, 321 (2004).CrossRefGoogle Scholar
  28. 28.
    J.F. Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, and Z.Q. Zheng, Trans. Nonferrous Met. Soc. China 18, 755 (2008).CrossRefGoogle Scholar
  29. 29.
    J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, and X.S. Zhao, Corros. Sci. 49, 2436 (2007).CrossRefGoogle Scholar
  30. 30.
    X. Zhang, HIT 621, 14 (2012).Google Scholar
  31. 31.
    M. Nicolas and A. Deschamps, Acta Mater. 51, 6077 (2003).CrossRefGoogle Scholar
  32. 32.
    Y. Liu, D.M. Jiang, B.Q. Li, T. Ying, and J. Hu, Mater. Des. 60, 116 (2014).CrossRefGoogle Scholar
  33. 33.
    J.Z. Chen, L. Zhen, S.J. Yang, W.Z. Shao, and S.L. Dai, Mater. Sci. Eng. A 500, 34 (2009).CrossRefGoogle Scholar
  34. 34.
    J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, and X.S. Zhao, Corros. Sci. 49, 2436 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringLiaoning Shihua UniversityFushunPeople’s Republic of China
  2. 2.State Key Laboratory of Rolling and Automation, School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.Institute for Advanced Study, Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong
  4. 4.Department of Material Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  5. 5.College of Petroleum EngineeringLiaoning Shihua UniversityFushunPeople’s Republic of China

Personalised recommendations