Advertisement

JOM

, Volume 70, Issue 12, pp 2846–2855 | Cite as

Rapid Leaching of Synthetic Scheelite by a Resin-in-Pulp Process

  • Dandan Gong
  • Kanggen Zhou
  • Junjie Li
  • Changhong Peng
  • Wei Chen
Solution Purification Technology
  • 66 Downloads

Abstract

Extraction of tungsten from scheelite has attracted considerable attention due to the progressive exhaustion of wolframite. This work presents a resin-in-pulp (RIP) technique to extract tungsten from synthetic scheelite. Decomposition of scheelite and extraction of tungsten from the leaching solution were achieved simultaneously by using diluted acid with 310 resin. The effects of the pH value of the acid solution, temperature, liquid-to-solid ratio, and resin dose on the scheelite leaching were investigated. The results showed that more than 96% of tungsten could be extracted. Furthermore, tungsten loaded on anion resin was effectively desorbed by using NH4OH as desorbent, and under the optimal desorption condition, the desorption efficiency reached up to 98.37%. Kinetic study suggested that the extraction of tungsten by the RIP technique could be fit using the Avrami kinetic model equation and was a chemical-controlled process. This work demonstrates that RIP can provide an effective way to extract tungsten from scheelite.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21707167) and the Fundamental Research Funds for the Central Universities of Central South University.

References

  1. 1.
    H.G. Li, K. Li, and J.G. Yang, Tungsten Metallurgy (Chang Sha: Central South University Press, 2010), pp. 36–39.Google Scholar
  2. 2.
    Y.L. Li, J.H. Yang, and Z.W. Zhao, JOM 69, 1958 (2017).CrossRefGoogle Scholar
  3. 3.
    Y.L. Li and Z.W. Zhao, JOM 69, 1106-1106 (2017).CrossRefGoogle Scholar
  4. 4.
    X.B. Li, Q.S. Zhou, Z.H. Peng, G.H. Liu, and T.G. Qi, Hydrometallurgy 171, 106 (2017).CrossRefGoogle Scholar
  5. 5.
    A.O. Kalpakli, S. Ilhan, C. Kahruman, and I. Yusufoglu, Hydrometallurgy 7–15, 121 (2012).Google Scholar
  6. 6.
    L.S. Wan, L. Yang, Y.M. Chen, L.F. Zhao, and H.C. Li, Int. J. Refract. Met. Hard Mater. 48, 301 (2015).CrossRefGoogle Scholar
  7. 7.
    L. Liu, J.L. Xue, K. Liu, and J. Zhu, JOM 68, 1 (2016).Google Scholar
  8. 8.
    Y.Y. Wang, B. Peng, Z.H. Yang, C.J. Tang, Y.H. Chen, Q. Liao, and Y.P. Liao, Environ. Earth Sci. 71, 4333 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Xu, L.Y. Chai, Q. Li, and L. Ye, Clean-Soil Air Water 45, 1 (2017).Google Scholar
  10. 10.
    Q.W. Wang, W.Q. Qin, L.Y. Chai, and Q.Z. Li, Environ. Sci. Pollut. Res. 21, 3866 (2014).CrossRefGoogle Scholar
  11. 11.
    P. Littlejohn and J. Vaughan, Miner. Eng. 54, 14 (2013).CrossRefGoogle Scholar
  12. 12.
    L.Y. Chai, X.B. Min, N. Tang, and Y.Y. Wang, Int. J. Environ. Pollut. 37, 20 (2009).CrossRefGoogle Scholar
  13. 13.
    J. Yang, L.Y. Chai, Y.Y. Wang, and X. He, Int. J. Environ. Pollut. 38, 256 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Peng, X.B. Li, and Z.W. Wang, Environ. Earth Sci. 73, 7873 (2015).CrossRefGoogle Scholar
  15. 15.
    X. Lan, S. Liang, and Y. Song, Hydrometallurgy 82, 133 (2006).CrossRefGoogle Scholar
  16. 16.
    Q.Z. Chen, K.G. Zhou, Y. Chen, A.H. Wang, and F. Liu, Environ. Technol. 38, 2824 (2017).Google Scholar
  17. 17.
    Q.Z. Chen, K.G. Zhou, Y. Hu, F. Liu, and A.H. Wang, Water Sci. Technol. 75, 1294 (2017).CrossRefGoogle Scholar
  18. 18.
    J.L. Zhang, X.H. Liu, X.Y. Chen, J.T. Li, and Z.W. Zhao, Hydrometallurgy 144–145, 77 (2014).CrossRefGoogle Scholar
  19. 19.
    K. Mirjalili and M. Roshani, Hydrometallurgy 85, 103 (2007).CrossRefGoogle Scholar
  20. 20.
    R.P. Singh Gaur, JOM 58, 45 (2006).CrossRefGoogle Scholar
  21. 21.
    J.I. Martins, A. Moreira, and S.C. Costa, Hydrometallurgy 70, 131 (2003).CrossRefGoogle Scholar
  22. 22.
    X.Y. Lu, G.S. Huo, and C.H. Liao, Trans. Nonferrous Met. Soc. China 24, 3008 (2014).CrossRefGoogle Scholar
  23. 23.
    B.L. He, Ion Exchange and Adsorption Resin (Shang Hai: Science and Technology Education Press, 1995), pp. 26–28.Google Scholar
  24. 24.
    Z.W. Zhao, J.L. Zhang, X.Y. Chen, X.H. Liu, J.T. Li, and W.J. Zhang, Hydrometallurgy 140, 120 (2013).CrossRefGoogle Scholar
  25. 25.
    G.M. RoZantsev and O.I. SaZonova, Russ. J. Coord. Chem. 31, 552 (2005).CrossRefGoogle Scholar
  26. 26.
    Z.W. Zhao, X.Y. Xu, X.Y. Chen, G.S. Huo, A.L. Chen, X.H. Liu, and H. Xu, Trans. Nonferrous Met. Soc. China 22, 686 (2012).CrossRefGoogle Scholar
  27. 27.
    E. Lassner and W. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds (New York: Kluwer Academic/Plenum, 1999), pp. 73–80.CrossRefGoogle Scholar
  28. 28.
    K. Jiang, K.G. Zhou, Y.C. Yang, and H. Du, Environ. Technol. 35, 82 (2014).CrossRefGoogle Scholar
  29. 29.
    A.A. Palant, V.A. Reznichenko, and S.E. Nikiforova, Russ. J. Inorg. Chem. 25, 480 (1980).Google Scholar
  30. 30.
    V.P. Szarvas and ECs Kurki, Z. Anorg. Allg. Chem. 305, 55 (1960).CrossRefGoogle Scholar
  31. 31.
    Z.W. Zhao, F. Hu, Y.J. Hu, X.B. Wang, P.M. Sun, G.S. Huo, and H.G. Li, Int. J. Refract. Met. Hard Mater 28, 633 (2010).CrossRefGoogle Scholar
  32. 32.
    F. Habashi, Principles of Extractive Metallurgy. General Principles (New York: Gordon and Breach, 1980).Google Scholar
  33. 33.
    T.A. Lasheen, M.N.E. Hazek, and A.S. Helal, Hydrometallurgy 98, 314 (2009).CrossRefGoogle Scholar
  34. 34.
    C. Kahruman and I. Yusufoglu, Hydrometallurgy 81, 182 (2006).CrossRefGoogle Scholar
  35. 35.
    H.P. Liu and Z.H. Yang, Hydrometallurgy, Leaching Technology (Beijing: Metallurgical Industry Press, 2016).Google Scholar
  36. 36.
    J.T. Li and Z.W. Zhao, Hydrometallurgy 163, 55 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations