, Volume 71, Issue 1, pp 285–293 | Cite as

Enhanced Ethanol Separation by Corona-Modified Surface MWCNT Composite PDMS/PES.PVP Membrane

  • Amirhossein Farahi
  • Ghasem D. NajafpourEmail author
  • Aliasghar Ghoreyshi
Materials in Nanomedicine and Bioengineering


Ethanol separation factor and total flux for a fabricated composite polydimethylsiloxane/polyethersulfone polyvinylpyrrolidone (PDMS/PES.PVP) membrane in the pervaporation process were obtained at 6.25 and 440 g/m2 h, respectively. In order to improve the separation of ethanol as a renewable resource from water, the composite PDMS surface was modified by corona treatment, and the treated surface was coated by multi-walled carbon nanotubes (MWCNTs). Implementation of corona treatment for surface modification leads to enhancement in the ethanol separation factor using a MWCNT surface-coated membrane. Based on the obtained data, for a corona time of 6 min and corona input power of 360 W, the ethanol separation factor was improved from 6.25 to 9.3 and also a total flux of 280 g/m2 h was obtained. Therefore, application of the novel fabricated PDMS/PES.PVP composite membrane with surface modification by corona treatment and MWCNT coating in the pervaporation process at the desired condition has significantly improved the ethanol separation factor (48.8%).



Authors gratefully acknowledge Biotechnology Research Lab., Noshirvani University of Technology, and the Rangin Plast Company for the facilities provided to conduct the present research. Also, special thanks are extended to the Nezhadgholi and Alizadeh Foundation (Babol, Iran) for the financial support of the present research through a research grant.


  1. 1.
    D. Sun, B. Li, and Z.L. Xu, Desalination 322, 159 (2013).CrossRefGoogle Scholar
  2. 2.
    A.V. Herrera-Herrera, M.A. Gonzalez-Curbelo, J. Hernandez-Borges, and M.A. Rodriguez-Delgado, Anal. Chim. Acta 734, 1 (2012).CrossRefGoogle Scholar
  3. 3.
    A.F. Ismail, N. Rahim, A. Mustafa, T. Matsuura, B. Ng, S. Abdullah, and S. Hashemifard, Sep. Purif. Technol. 80, 20 (2011).CrossRefGoogle Scholar
  4. 4.
    L. Miranda, R. Short, F. Van Amerom, R. Bell, and R. Byrne, J. Membr. Sci. 344, 26 (2009).CrossRefGoogle Scholar
  5. 5.
    T.H. Weng, H.H. Tseng, and M.Y. Wey, Int. J. Hydrogen Energy 34, 8707 (2009).CrossRefGoogle Scholar
  6. 6.
    V. Moghimifar, A. Raisi, and A. Aroujalian, J. Membr. Sci. 461, 69 (2014).CrossRefGoogle Scholar
  7. 7.
    B.M. Novak, Adv. Mater. 5, 422 (1993).CrossRefGoogle Scholar
  8. 8.
    A. Rahimpour, S. Madaeni, A. Taheri, and Y. Mansourpanah, J. Membr. Sci. 313, 158 (2008).CrossRefGoogle Scholar
  9. 9.
    L. Romasanta, M. Lopez-Manchado, and R. Verdejo, Eur. Polym. J 49, 1373 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Kim, T.W. Pechar, and E. Marand, Desalination 192, 330 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Sanip, A.F. Ismail, P. Goh, T. Soga, M. Tanemura, and H. Yasuhiko, Sep. Purif. Technol. 78, 208 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Nour, K. Berean, S. Balendhran, J.Z. Ou, J. Du Plessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K. Kalantar-zadeh, Int. J. Hydrogen Energy 38, 10494 (2013).CrossRefGoogle Scholar
  13. 13.
    A.D. Kiadehi, M. Jahanshahi, A. Rahimpour, and S.A.A. Ghoreyshi, Chem. Eng. Process. 90, 41 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Esfahanian, A. Ghorbanfarahi, A. Ghoreyshi, G. Najafpour, H. Younesi, and A. Ahmad, Int. J. Eng. Trans. B 25, 249 (2012).Google Scholar
  15. 15.
    C. Fu, D. Cai, S. Hu, Q. Miao, Y. Wang, P. Qin, Z. Wang, and T. Tan, Bioresour. Technol. 200, 648 (2016).CrossRefGoogle Scholar
  16. 16.
    P. Peng, B. Shi, and Y. Lan, Sep. Sci. Technol 46, 234 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Guo, G. Zhang, W. Wu, S. Ji, Z. Qin, and Z. Liu, Chem. Eng. J. 158, 558 (2010).CrossRefGoogle Scholar
  18. 18.
    M. Ozdemir, C.U. Yurteri, and H. Sadikoglu, Crit. Rev. Food Sci. Nutr. 39, 457 (1999).CrossRefGoogle Scholar
  19. 19.
    S. Pal, S.K. Ghatak, S. De, and S. DasGupta, J. Membr. Sci. 323, 1 (2008).CrossRefGoogle Scholar
  20. 20.
    J.R. Rocca-Smith, T. Karbowiak, E. Marcuzzo, A. Sensidoni, F. Piasente, D. Champion, O. Heinz, P. Vitry, E. Bourillot, and E. Lesniewska, Polym. Degrad. Stab. 132, 109 (2016).CrossRefGoogle Scholar
  21. 21.
    I. Sadeghi, A. Aroujalian, A. Raisi, B. Dabir, and M. Fathizadeh, J. Membr. Sci. 430, 24 (2013).CrossRefGoogle Scholar
  22. 22.
    K.F. Yee, Y.T. Ong, A.R. Mohamed, and S.H. Tan, J. Membr. Sci. 453, 546 (2014).CrossRefGoogle Scholar
  23. 23.
    S.S. Shahrabi, H. Mortaheb, J. Barzin, and M. Ehsani, Desalination 287, 281 (2012).CrossRefGoogle Scholar
  24. 24.
    T.C. Hobæk, K.G. Leinan, H.P. Leinaas, and C. Thaulow, BioNanoScience 1, 63 (2011).CrossRefGoogle Scholar
  25. 25.
    M.J. Owen and P.R. Dvornic, Silicone Surface Science, 1st ed. (New York: Springer, 2012), pp. 1–21.Google Scholar
  26. 26.
    J. Chen, J. Li, R. Qi, H. Ye, and C. Chen, J. Membr. Sci. 322, 113 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Takegami, H. Yamada, and S. Tsujii, Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane. J. Membr. Sci. 75, 93 (1992).CrossRefGoogle Scholar
  28. 28.
    T. Kashiwagi, K. Okabe, and K. Okita, J. Membr. Sci. 75, 93 (1992).CrossRefGoogle Scholar
  29. 29.
    L. Liang and E. Ruckenstein, J. Membr. Sci. 114, 227 (1996).CrossRefGoogle Scholar
  30. 30.
    M. Osorio-Galindo, A. Iborra-Clar, I. Alcaina-Miranda, and A. Ribes-Greus, J. Appl. Polym. Sci. 81, 546 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Biotechnology Research Laboratory, Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations