, Volume 71, Issue 1, pp 109–115 | Cite as

Effect of Aluminizing on the High-Temperature Oxidation Behavior of an Alumina-Forming Austenitic Stainless Steel

  • S. Rashidi
  • J. P. Choi
  • J. W. Stevenson
  • A. Pandey
  • R. K. GuptaEmail author
Advancement in Solid Oxide Fuel Cell Research


Due to their excellent oxidation resistance and creep resistance at elevated temperature, alumina-forming austenitic (AFA) stainless steels have emerged as potential alloys for high-temperature applications. In this study, a reactive air aluminizing method was used to aluminize the surface of AFA 25 stainless steel. The high-temperature oxidation behavior of both as-received and aluminized AFA 25 was investigated at 850°C in dry air. The mass gain per unit area was higher for aluminized AFA 25 than for as-received material. X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy, performed on the oxide scales following high-temperature oxidation tests, confirmed formation of alumina scale on both as-received and aluminized AFA. However, the aluminized alloy exhibited a thicker alumina scale on the surface, as well as more extensive penetration of the scale into the subsurface region of the alloy.


  1. 1.
    Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 42, 922 (2011).CrossRefGoogle Scholar
  2. 2.
    M.P. Brady, Y. Yamamoto, G. Muralidharan, H. Rogers, and B.A. Pint, ORNL/TM-2013-479, Project Report for DOE under Contract DE-AC05-00OR22725 (2013).Google Scholar
  3. 3.
    Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Science 316, 433 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 38, 2737 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Xu, X. Zhang, G. Chen, and Z. Lu, Mater. Lett. 65, 3285 (2011).CrossRefGoogle Scholar
  6. 6.
    J.M.M. Acevedo and C.G. Subramanian, Protective coating system for high temperature stainless steel, Patent No. US6475647B1 (2002).Google Scholar
  7. 7.
    M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker, Oxid. Met. 72, 311 (2009).CrossRefGoogle Scholar
  8. 8.
    N.V. Bangaru and R.C. Krutenat, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2, 806 (1984).CrossRefGoogle Scholar
  9. 9.
    I. Kvernes, M. Oliveira, and P. Kofstad, Corros. Sci. 17, 237 (1977).CrossRefGoogle Scholar
  10. 10.
    R. Sivakumar and B.L. Mordike, Surf. Coat. Technol. 37, 139 (1989).CrossRefGoogle Scholar
  11. 11.
    S. Bose, High Temperature Coatings (Oxford: Butterworth-Heinemann, 2018).Google Scholar
  12. 12.
    I. Khakpour, R. Soltani, and M.H. Sohi, Proc. Mater. Sci. 11, 515 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Gembalski, Met. Sci. Heat Treat. 9, 646 (1967).CrossRefGoogle Scholar
  14. 14.
    J.P. Choi, K. Scott Weil, Y. Matt Chou, J.W. Stevenson, and Z. Gary Yang, Int. J. Hydrog. Energy 36, 4549 (2011).CrossRefGoogle Scholar
  15. 15.
    D. Wang and Z. Shi, Appl. Surf. Sci. 227, 255 (2004).CrossRefGoogle Scholar
  16. 16.
    W. Deqing, S. Ziyuan, and Z. Longjiang, Appl. Surf. Sci. 214, 304 (2003).CrossRefGoogle Scholar
  17. 17.
    S. Kobayashi and T. Yakou, Mater. Sci. Eng. A 338, 44 (2002).CrossRefGoogle Scholar
  18. 18.
    B.A. Pint, J.P. Shingledecker, M.P. Brady, and P.J. Maziasz, Proc. ASME Turbo Expo 3, 995 (2007).Google Scholar
  19. 19.
    H. Josefsson, F. Liu, J.E. Svensson, M. Halvarsson, and L.G. Johansson, Mater. Corros. 56, 801 (2005).CrossRefGoogle Scholar
  20. 20.
    S.H. Nie, Y. Chen, X. Ren, K. Sridharan, and T.R. Allen, J. Nucl. Mater. 399, 231 (2010).CrossRefGoogle Scholar
  21. 21.
    J.R. Nicholls and M.J. Bennett, Mater. High Temp. 17, 413 (2000).Google Scholar
  22. 22.
    A. Mohammadi, J. Jahromi, M. Majid, J. Sirus, K. Akira, S. Korush, J. Jahromi Ahmad, and K. Iman, Trans. JWRI 40, 53 (2011).Google Scholar
  23. 23.
    S.M. Jiang, H.Q. Li, J. Ma, C.Z. Xu, J. Gong, and C. Sun, Corros. Sci. 52, 2316 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Corrosion Engineering ProgramThe University of AkronAkronUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.LG Fuel Cell Systems Inc.North CantonUSA

Personalised recommendations