Advertisement

JOM

, Volume 71, Issue 1, pp 178–184 | Cite as

Bacterial Growth and Death on Cotton Fabrics Conformally Coated with ZnO Thin Films of Varying Thicknesses via Atomic Layer Deposition (ALD)

  • Renee U. Puvvada
  • Jamie P. Wooding
  • Michael C. Bellavia
  • Emily K. McGuinness
  • Todd A. Sulchek
  • Mark D. LosegoEmail author
Application of Atomic Layer Deposition for Functional Nanomaterials

Abstract

Hospital fabrics are commonly exposed to multiple patients and contaminated surfaces between washing/sterilization cycles. Consequently, these textiles act as vectors for the spread of diseases, especially bacterial pathogens. Many modification schemes have been proposed to mitigate the growth and spread of bacteria on fabrics, including use of antimicrobial metal oxide nanoparticles. The aim of this study is to examine the effectiveness of conformal nanoscale ZnO coatings applied to cotton fabrics via atomic layer deposition to control bacterial spread. We find that, at low ZnO loading fractions, bacteria metabolize Zn2+ ions and reproduce more rapidly. However, as the ZnO loading is increased, the higher concentrations of Zn2+ overwhelm the bacteria and the nanocoatings become effective antibacterial treatments, killing all bacteria present. These results map out an important design space for implementing ZnO coatings as a potential antimicrobial treatment for textiles and other surfaces.

Notes

Acknowledgements

Funding for this project came from the Georgia Tech President’s Undergraduate Research Award (PURA), the Petit Bioengineering Undergraduate Research Fellowship, and the Roxanne D. Westendorf Undergraduate Research Fund. Additionally, this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650044. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Part of this research was conducted in Georgia Tech’s Materials Innovation & Learning Laboratory (The MILL), an uncommon “make and measure” space committed to elevating undergraduate research in materials science. This work was also performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant No. ECCS-1542174). Finally, the authors thank Brandon D. Piercy for performing x-ray diffraction for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2018_3154_MOESM1_ESM.pdf (735 kb)
Supplementary material 1 (PDF 735 kb)

References

  1. 1.
    A. Mitchell, M. Spencer, and C. Edmiston Jr., J. Hosp. Infect. 90, 285 (2015).CrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention, Types of Healthcare-Associated Infections (Centers for Disease Control and Prevention, 2014, March 26). https://www.cdc.gov/hai/infectiontypes.html. Accessed 15 June 2018.
  3. 3.
    I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, M. Arguirova, M. Leseva, and A. Gedanken, Ultrason. Sonochem. 25, 82 (2015).CrossRefGoogle Scholar
  4. 4.
    K.N. Kelly and J.R. Monson, Surg. (Oxf.) 30, 640 (2012).CrossRefGoogle Scholar
  5. 5.
    L.S. Munoz-Price, K.L. Arheart, J.P. Mills, T. Cleary, D. DePascale, A. Jimenez, Y. Fajardo-Aquino, G. Coro, D.J. Birnbach, and D.A. Lubarsky, Am. J. Infect. Control 40, 245 (2012).CrossRefGoogle Scholar
  6. 6.
    J.M. Nordstrom, K.A. Reynolds, and C.P. Gerba, Am. J. Infect. Control 40, 539 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Suleyman, G. Alangaden, and A.C. Bardossy, Curr. Infect. Dis. Rep. 20, 1 (2018).CrossRefGoogle Scholar
  8. 8.
    J. Sawai, J. Microbiol. Methods 54, 177 (2003).CrossRefGoogle Scholar
  9. 9.
    P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. de Andrade, R.S. Cruz, and E.A.A. Medeiros, Food Bioprocess Technol. 5, 1447 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Chandrangsu, C. Rensing, and J.D. Helmann, Nat. Rev. Microbiol. 15, 338 (2017).CrossRefGoogle Scholar
  11. 11.
    A.A. Navarrete, E.V. Mellis, A. Escalas, L.N. Lemos, J.L. Junior, J.A. Quaggio, J. Zhou, and S.M. Tsai, Agric. Ecosyst. Environ. 236, 187 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Li, L. Zhu, and D. Lin, Environ. Sci. Technol. 45, 1977 (2011).CrossRefGoogle Scholar
  13. 13.
    K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose, Appl. Phys. Lett. 90, 213902 (2007).CrossRefGoogle Scholar
  14. 14.
    W.A. Daoud and J.H. Xin, J. Am. Ceram. Soc. 87, 953 (2004).CrossRefGoogle Scholar
  15. 15.
    H. Zhang and G. Chen, Environ. Sci. Technol. 43, 2905 (2009).CrossRefGoogle Scholar
  16. 16.
    B. Mahltig, H. Haufe, and H. Böttcher, J. Mater. Chem. 15, 4385 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Yadav, V. Prasad, A.A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, Bull. Mater. Sci. 29, 641 (2006).CrossRefGoogle Scholar
  18. 18.
    B.A. Holt, S.A. Gregory, T. Sulchek, S. Yee, and M.D. Losego, A.C.S. Appl. Mater. Interfaces 10, 7709 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Vasanthi, K. Ravichandran, N.J. Begum, G. Muruganantham, S. Snega, A. Panneerselvam, and P. Kavitha, Superlattices Microstruct. 55, 180 (2013).CrossRefGoogle Scholar
  20. 20.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, Spectrochim. Acta Part A 138, 105 (2015).CrossRefGoogle Scholar
  21. 21.
    A.G. Cuevas, K. Balangcod, T. Balangcod, and A. Jasmin, Procedia Eng. 68, 537 (2013).CrossRefGoogle Scholar
  22. 22.
    Y.Y. Xi, B.Q. Huang, A.B. Djurišić, C.M. Chan, F.C. Leung, W.K. Chan, and D.T. Au, Thin Solid Films 517, 6527 (2009).CrossRefGoogle Scholar
  23. 23.
    G.J. Chi, S.W. Yao, J. Fan, W.G. Zhang, and H.Z. Wang, Surf. Coat. Technol. 157, 162 (2002).CrossRefGoogle Scholar
  24. 24.
    N.A. Aal, F. Al-Hazmi, A.A. Al-Ghamdi, A.A. Al-Ghamdi, F. El-Tantawy, and F. Yakuphanoglu, Spectrochim. Acta Part A 135, 871 (2015).CrossRefGoogle Scholar
  25. 25.
    K.H. Tam, A.B. Djurišić, C.M.N. Chan, Y.Y. Xi, C.W. Tse, Y.H. Leung, W.K. Chan, F.C.C. Leung, and D.W.T. Au, Thin Solid Films 516, 6167 (2008).CrossRefGoogle Scholar
  26. 26.
    G.K. Hyde, K.J. Park, S.M. Stewart, J.P. Hinestroza, and G.N. Parsons, Langmuir 23, 9844 (2007).CrossRefGoogle Scholar
  27. 27.
    G.K. Hyde, G. Scarel, J.C. Spagnola, Q. Peng, K. Lee, B. Gong, K.G. Roberts, K.M. Roth, C.A. Hanson, C.K. Devine, and S.M. Stewart, Langmuir 26, 2550 (2010).CrossRefGoogle Scholar
  28. 28.
    K. Lee, J.S. Jur, D.H. Kim, and G.N. Parsons, J. Vac. Sci. Technol. A 30, 01A163 (2012).CrossRefGoogle Scholar
  29. 29.
    S.M. George, Chem. Rev. 110, 111 (2010).CrossRefGoogle Scholar
  30. 30.
    R.L. Puurunen, J. Appl. Phys. 97, 9 (2005).CrossRefGoogle Scholar
  31. 31.
    B.D. Piercy and M.D. Losego, J. Vac. Sci. Technol. B 33, 043201 (2015).CrossRefGoogle Scholar
  32. 32.
    E. Guziewicz, I.A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, and M. Guziewicz, J. Appl. Phys. 103, 033515 (2008).CrossRefGoogle Scholar
  33. 33.
    S.K. Kim, C.S. Hwang, S.-H.K. Park, and S.J. Yun, Thin Solid Films 478, 103 (2005).Google Scholar
  34. 34.
    D. Price, A. Horrocks, M. Akalin, and A. Faroq, J. Anal. Appl. Pyrolysis 40, 511 (1997).CrossRefGoogle Scholar
  35. 35.
    M. Yatagai and S.H. Zeronian, Cellulose 1, 205 (1994).CrossRefGoogle Scholar
  36. 36.
    A.E. Shafei and A. Abou-Okeil, Carbohydr. Polym. 83, 920 (2011).CrossRefGoogle Scholar
  37. 37.
    AATCC, TM100:2004 Assessment of Antibacterial Finishes on Textile Materials, Developed from American Association of Textile Chemists and Colorists (2004).Google Scholar
  38. 38.
    J. Jur, W.J. Sweet, C.J. Oldham, and G.N. Parsons, Adv. Funct. Mater. 21, 1993 (2011).CrossRefGoogle Scholar
  39. 39.
    D. Hojo, G. K. Hyde, J. Spagnola, and G. N. Parsons, MRS Online Proceedings Library, 1054 (2007).Google Scholar
  40. 40.
    S. Selvam, R. Rajiv Gandhi, J. Suresh, S. Gowri, S. Ravikumar, and M. Sundrarajan, Int. J. Pharm. 434, 366 (2012).CrossRefGoogle Scholar
  41. 41.
    K. Hantke, Zinc Biochemistry, Physiology, and Homeostasis (Dordrecht: Springer, 2001), pp. 53–63.CrossRefGoogle Scholar
  42. 42.
    N. Padmavathy and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008).CrossRefGoogle Scholar
  43. 43.
    M.G. Palmgren, S. Clemens, L.E. Williams, U. Krämer, S. Borg, J.K. Schjørring, and D. Sanders, Trends Plant Sci. 13, 464 (2008).CrossRefGoogle Scholar
  44. 44.
    B.A. Holt, M.C. Bellavia, D. Potter, D. White, S.R. Stowell, and T. Sulchek, Biomater. Sci. 5, 463 (2017).CrossRefGoogle Scholar
  45. 45.
    M.L. Kääriäinen, C.K. Weiss, S. Ritz, S. Pütz, D.C. Cameron, V. Mailänder, and K. Landfester, Appl. Surf. Sci. 287, 375 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.The Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  4. 4.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations