Advertisement

JOM

, Volume 71, Issue 1, pp 444–451 | Cite as

Microstructural Modification and High-Temperature Grain Stability of Aluminum in an Aluminum-Titanium Friction Stir Weld with Zinc Interlayer

  • Amlan KarEmail author
  • Satyam Suwas
  • Satish V. Kailas
Aluminum: New Alloys and Heat Treatment
  • 107 Downloads

Abstract

In dissimilar friction stir welding (FSW), the presence of a third interlayer material can have a positive influence on local ternary chemical reactions due to complex mechanical mixing in the weld nugget. This leads to a reduction and distribution of intermetallic compounds as fine particles in the weld nugget. These fine particles can provide high-temperature grain stability. In the present investigation, a zinc (Zn) interlayer was used during the FSW of aluminum (Al) with titanium (Ti). X-ray computed tomography results revealed the occurrence of mechanical mixing of Zn with both Al and Ti. To understand the nature of the weld nugget at high temperatures, heat treatment of the weld was carried out at 500°C for 60 min. The detailed mechanisms leading to the superior grain stability of Al in the weld nugget were investigated. The improvement in grain stability of Al may open up a new area of research and development to produce new materials with high-temperature grain stability.

Notes

Acknowledgements

Authors would like to thank the Defense Research & Development Organization (DRDO, Grant No.: DRDO/MME/SVK/0618), Department of Science and Technology (DST), Ministry of Human Resources Development (MHRD), India, for support and research funding. We would also like to thank the Institute X-ray facility and Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science (IISc), Bangalore, for providing the facilities.

References

  1. 1.
    P. Woizeschke and J. Schumacher, Phys. Proc. 41, 12 (2013).CrossRefGoogle Scholar
  2. 2.
    P. Woizeschke and F. Vollertsen, CIRP Ann. 65, 241 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Hovanski, P. Upadyay, S. Kleinbaum, B. Carlson, E. Boettcher, and R. Ruokolainen, JOM 69, 1060 (2017).CrossRefGoogle Scholar
  4. 4.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang, Metall. Trans. A 23, 2081 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Sujata, S. Bhargava, and S. Sangal, ISIJ Int. 36, 255 (1996).CrossRefGoogle Scholar
  6. 6.
    R. Borrisutthekul, Y. Miyashita, and Y. Mutoh, Sci. Technol. Adv. Mater. 6, 199 (2005).CrossRefGoogle Scholar
  7. 7.
    H.-B. Chen, K. Yan, T. Lin, S.-B. Chen, C.-Y. Jiang, and Y. Zhao, Mater. Sci. Eng. A 433, 64 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Liu, Y. Li, H. Geng, and J. Wang, Mater. Lett. 61, 1288 (2007).CrossRefGoogle Scholar
  9. 9.
    D.E. Alman, J.A. Hawk, A.V. Petty, and J.C. Rawers, JOM 46, 31 (1994).CrossRefGoogle Scholar
  10. 10.
    Y. Chen, S. Chen, and L. Li, Int. J. Adv. Manuf. Technol. 44, 265 (2008).CrossRefGoogle Scholar
  11. 11.
    D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Mater. Des. 91, 80 (2016).CrossRefGoogle Scholar
  12. 12.
    J.C. Gachon, A.S. Rogachev, H.E. Grigoryan, E.V. Illarionova, J.J. Kuntz, D.Y. Kovalev, A.N. Nosyrev, N.V. Sachkova, and P.A. Tsygankov, Acta Mater. 53, 1225 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Kimura, A. Fuji, T.H. North, K. Ameyama, and M. Aki, Mater. Sci. Technol. 13, 673 (1997).CrossRefGoogle Scholar
  14. 14.
    H.C. Madhu, P. Ajay Kumar, C.S. Perugu, and S.V. Kailas, J. Mater. Eng. Perform. 27, 1318 (2018).CrossRefGoogle Scholar
  15. 15.
    D. Yadav, R. Bauri, A. Kauffmann, and J. Freudenberger, Metall. Mater. Trans. A 47, 4226 (2016).CrossRefGoogle Scholar
  16. 16.
    R.S. Coelho, A. Kostka, J. dos Santos, and A.R. Pyzalla, Adv. Eng. Mater. 10, 1127 (2008).CrossRefGoogle Scholar
  17. 17.
    Z. Song, K. Nakata, A. Wu, J. Liao, and L. Zhou, Mater. Des. 57, 269 (2014).CrossRefGoogle Scholar
  18. 18.
    U. Dressler, G. Biallas, and U. Alfaro Mercado, Mater. Sci. Eng. A 526, 113 (2009).CrossRefGoogle Scholar
  19. 19.
    F. Adel Mehraban, F. Karimzadeh, and M.H. Abbasi, JOM 67, 998 (2015).CrossRefGoogle Scholar
  20. 20.
    N. Nadammal, S.V. Kailas, and S. Suwas, Mater. Des. (1980–2015) 65, 127 (2015).CrossRefGoogle Scholar
  21. 21.
    N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Mater. Character. 140, 134 (2018).CrossRefGoogle Scholar
  22. 22.
    A. Kumar, D. Yadav, C.S. Perugu, and S.V. Kailas, Mater. Des. 113, 99 (2017).CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Mater. Sci. Eng. A 488, 25 (2008).CrossRefGoogle Scholar
  24. 24.
    F.J. Humphreys, Acta Mater. 45, 4231 (1997).CrossRefGoogle Scholar
  25. 25.
    S.-Y. Kim, S.-B. Jung, C.-C. Shur, Y.-M. Yeon, and D.-U. Kim, J. Mater. Sci. 38, 1281 (2003).CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
  27. 27.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Acta Mater. 45, 4751 (1997).CrossRefGoogle Scholar
  28. 28.
    N. Kumar and R.S. Mishra, Mater. Character. 74, 1 (2012).CrossRefGoogle Scholar
  29. 29.
    I. Roy, M. Chauhan, F.A. Mohamed, and E.J. Lavernia, Metall. Mater. Trans. A 37, 721 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A 433, 50 (2006).CrossRefGoogle Scholar
  31. 31.
    P. Ulysse, Int. J. Mach. Tools Manuf 42, 1549 (2002).CrossRefGoogle Scholar
  32. 32.
    R.S. Mishra and M.W. Mahoney, Friction Stir Welding and Processing (ASM International, 2007).Google Scholar
  33. 33.
    N.K.K.S. Suresh, R.S. Mishra, and S. Suwas, Mater. Sci. Forum 753, 247 (2013).CrossRefGoogle Scholar
  34. 34.
    A. Kar, S. Suwas, and S.V. Kailas, Mater. Sci. Eng. A 733, 199 (2018).CrossRefGoogle Scholar
  35. 35.
    S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas, Metall. Trans. A 24, 2513 (1993).CrossRefGoogle Scholar
  36. 36.
    S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas, Metall. Mater. Trans. A 25, 1425 (1994).CrossRefGoogle Scholar
  37. 37.
    R. Bauri, D. Yadav, and G. Suhas, Mater. Sci. Eng. A 528, 4732 (2011).CrossRefGoogle Scholar
  38. 38.
    J. Tardy and K.N. Tu, Phys. Rev. B 32, 2070 (1985).CrossRefGoogle Scholar
  39. 39.
    Y.-G. Guo, J.-S. Hu, and L.-J. Wan, Adv. Mater. 20, 2878 (2008).CrossRefGoogle Scholar
  40. 40.
    T.V.S.L. Satyavani, B. Ramya Kiran, V. Rajesh Kumar, A. Srinivas Kumar, and S.V. Naidu, Eng. Sci. Technol. 19, 40 (2016).Google Scholar
  41. 41.
    C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, and H.H. Wang, Microelectron. Reliab. 48, 416 (2008).CrossRefGoogle Scholar
  42. 42.
    D. Yadav and R. Bauri, Mater. Sci. Eng. A 539, 85 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBengaluruIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations