, Volume 71, Issue 2, pp 801–808 | Cite as

Piassava Fiber as an Epoxy Matrix Composite Reinforcement for Ballistic Armor Applications

  • Fabio Da Costa Garcia FilhoEmail author
  • Sergio Neves Monteiro
Technical Article


The ballistic performance of piassava fiber-reinforced epoxy matrix composites was evaluated as an intermediate layer in multilayered armor systems (MASs). The composites were produced varying the volumetric fractions of piassava fibers, in a range of 10–50 vol.%, embedded in DGEBA/TETA as the epoxy matrix. These composites were adhesive bonded to a MAS composed of a frontal Al2O3 ceramic tile and an aluminum sheet alloy as the third layer. Ballistic tests were conducted using 7.62-mm-high velocity ammunition. The evaluation of the ballistic performance of the system was measured by the depth of penetration caused in a clay witness, which simulates the consistency of the human body, in accordance to some requirements of the NIJ standard 0101.06. The fractured materials were analyzed after the ballistic tests by scanning electron microscopy. The ballistic results showed that MASs using piassava fiber composites as a second layer are within the depth of penetration bounds to be considered as an efficient protection. This indicates that piassava fiber, a green material, is a promising material to be used in composites for ballistic armor applications.



The authors thank the support to this investigation by the Brazilian agencies: CNPq, FAPERJ, and CAPES.


  1. 1.
    K.G. Satyanarayana, G.G.C. Arizaga, and F. Wypych, Prog. Polym. Sci. 34, 982 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Kalia, B.S. Kaith, and I. Kaur, Cellulose Fibers: Bio- and Nano- Polymer Composites, 1st ed. (New York: Springer, 2011).CrossRefGoogle Scholar
  3. 3.
    S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A.B. Bevitori, I.L.A. Silva, and L.L. Costa, Metall. Mater. Trans. A 42, 2963 (2011).CrossRefGoogle Scholar
  4. 4.
    O. Faruk, A.K. Bledzki, H.P. Fink, and M. Sain, Prog. Polym. Sci. 37, 1555 (2012).CrossRefGoogle Scholar
  5. 5.
    V.K. Thakur, M.K. Thakur, and R.K. Gupta, Int. J. Polym. Anal. Charact. 19, 256 (2014).CrossRefGoogle Scholar
  6. 6.
    O. Güven, S.N. Monteiro, E.A.B. Moura, and J.W. Drelich, Polym. Rev. 56, 702 (2016).CrossRefGoogle Scholar
  7. 7.
    K.L. Pickering, M.G. Aruan Efendy, and T.M. Le, Compos. Part A. 83, 98 (2016).CrossRefGoogle Scholar
  8. 8.
    F.S. Luz, E.P. Lima Jr., L.H.L. Louro, and S.N. Monteiro, Mater. Res. 18, 170 (2015).CrossRefGoogle Scholar
  9. 9.
    S.N. Monteiro, T.L. Milanezi, L.H.L. Louro, E.P. Lima Jr., F.O. Braga, A.V. Gomes, and J.W. Drelich, Mater. Des. 96, 263 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Benzait and L. Trabzon, J. Compos. Mater. (2018). Scholar
  11. 11.
    L.F.C. Nascimento, L.I.F. Holanda, L.H.L. Louro, S.N. Monteiro, A.V. Gomes, and E.P. Lima Jr., Metall. Mat. Trans. A 48, 4425 (2017).CrossRefGoogle Scholar
  12. 12.
    F.O. Braga, L.T. Bolzan, F.S. Luz, P.H.L.M. Lopes, E.P. Lima Jr., and S.N. Monteiro, J. Mater. Res. Technol. 6, 417 (2017).CrossRefGoogle Scholar
  13. 13.
    L. Wang, S. Kanesalingam, R. Nayak, and R. Padhye, Text. Light Ind. Sci. Technol. 3, 37 (2014).Google Scholar
  14. 14.
    E. Medvedovski, Ceram. Int. 36, 2103 (2010).CrossRefGoogle Scholar
  15. 15.
    S.N. Monteiro, E.P. Lima Jr., L.H.L. Louro, and L.C. Silva, Metall. Mater. Trans. A 46, 37 (2015).CrossRefGoogle Scholar
  16. 16.
    K.G. Satyanarayana, J.L. Guimarães, and F. Wypych, Compos. Part A 38, 694 (2007).Google Scholar
  17. 17.
    S.N. Monteiro, Na. Fibers 6, 191 (2008).CrossRefGoogle Scholar
  18. 18.
    R.C.M.P. Aquino, S.N. Monteiro, and J.R.M. D’Almeida, J. Mater. Sci. Lett. 22, 1495 (2003).CrossRefGoogle Scholar
  19. 19.
    S.N. Monteiro, F.P.D. Lopes, A.S. Ferreira, and D.C.O. Nascimento, JOM (Warrendale) 61, 17 (2009). Scholar
  20. 20.
    D.C.O. Nascimento, A.S. Ferreira, S.N. Monteiro, R.C.M.P. Aquino, and K.G. Satyanarayana, Compos. Part A 43, 353 (2012).CrossRefGoogle Scholar
  21. 21.
    J.R.M. D’Almeida, R.C.M.P. Aquino, and S.N. Monteiro, Compos. Part A 37, 1473 (2006).CrossRefGoogle Scholar
  22. 22.
    NIJ Standards - 0101.06, U.S. Department of Justice/Office of Justice Programs - National Institute of Justice (2008).Google Scholar
  23. 23.
    L.H.L. Louro and M.A. Meyers, J. Mater. Sci. 24, 2516 (1989).CrossRefGoogle Scholar
  24. 24.
    H. Matsuda, D.S. Seo, N. Yoshida, K. Fujibayashi, S. Kobayashi, and Y. Yabe, Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A. 264, 23 (1995).CrossRefGoogle Scholar
  25. 25.
    A. Tasdermirci, G. Tunusoglu, and M. Guden, Int. J. Impact Eng 44, 1 (2012).CrossRefGoogle Scholar
  26. 26.
    S.N. Monteiro, F.O. Braga, E.P. Lima Jr., L.H.L. Louro, and J.W. Drelich, Polym. Eng. Sci. (2016). Scholar
  27. 27.
    T.L. Anderson, Fracture mechanics—Fundamentals and Applications, 2nd ed. (New York: CRC Press, 1995).zbMATHGoogle Scholar
  28. 28.
    S.N. Monteiro, R.C.M.P. Aquino, F.P.D. Lopes, and J.R.M. D’Almeida, Rev. Mater. 11, 204 (2006).Google Scholar
  29. 29.
    S.N. Monteiro, F.S. Assis, C.L. Ferreira, N.T. Simonassi, R.P. Weber, M.S. Oliveira, H.A. Colorado, and A.C. Pereira, Polymers 10, 246 (2018).CrossRefGoogle Scholar
  30. 30.
    F.O. Braga, L.T. Bolzan, F.J.H.T.V. Ramos, S.N. Monteiro, and E.P. Lima Jr., Mater Res. Ibero-American J. Mater. 20, 767 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Fabio Da Costa Garcia Filho
    • 1
    Email author
  • Sergio Neves Monteiro
    • 1
  1. 1.Department of Materials ScienceMilitary Institute of Engineering (IME)Urca, Rio de JaneiroBrazil

Personalised recommendations