, Volume 71, Issue 1, pp 407–418 | Cite as

Water Quenching of Hot-Rolled Aluminum Strips: Process Integrated Heat Treatment of the Alloy EN AW-6082

  • Olexandr Grydin
  • Anatolii Andreiev
  • Nikolay Sotirov
  • Mykhailo Stolbchenko
  • Teresa M. Behr
  • Anton Ashkelianets
  • Iaroslav Frolov
  • Mirko Schaper
Aluminum: New Alloys and Heat Treatment


Hot rolling of thin sheets of hardenable aluminum alloys with integrated quenching allows the coupling of both deformation and heat treatment into a single processing step, analogous to hot extrusion. However, unlike hot extrusion, hot rolling is performed in a lower temperature range as a result of material contact with the unheated forming tool during deformation. The influence of this type of processing on mechanical properties has rarely been studied. In the present work, the effect of the individual parameters of hot rolling with integrated heat treatment on the microstructure and mechanical properties of alloy EN AW-6082 has been studied. The results have been compared with similarly heat-treated unworked material. It has been revealed that hot rolling can cause the strength of the material to deteriorate after final natural and artificial aging, leading to a failure to fulfil the requirements of standards. Finally, recommendations for decreasing the above-mentioned negative influence have been proposed.



The authors would like to thank Kristina Duschik for her assistance with the TEM investigations.


  1. 1.
    J. Hirsch, Trans. Nonferrous Met. Soc. China 24, 1995 (2014).CrossRefGoogle Scholar
  2. 2.
    Z. Wojciech and R. Kelly, ASM Handbook, Volume 14A: Metalworking: Bulk Forming, ed. S.L. Semiatin (Materials Park: ASM International, 2005), pp. 522–527.Google Scholar
  3. 3.
    O. Engler, C. Schäfer, and O. Myhr, Mater. Sci. Eng. A 639, 65 (2015).CrossRefGoogle Scholar
  4. 4.
    F. Martinsen, F. Ehlers, M. Torsaeter, and R. Holmestad, Acta Mater. 60, 6091 (2012).CrossRefGoogle Scholar
  5. 5.
    K. Teichmann, C. Marioara, and S. Andersen, Metall. Mater. Trans. A 43, 4006 (2012).CrossRefGoogle Scholar
  6. 6.
    X. Fan, M. Li, D. Li, Y. Shao, S. Zhang, and Y. Peng, Mater. Sci. Technol. 30, 1263 (2014).CrossRefGoogle Scholar
  7. 7.
    B. Milkereit, N. Wanderka, C. Schick, and O. Kessler, Mater. Sci. Eng. A 550, 87 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Saga, Y. Sasaki, M. Kikuchi, Z. Yan, and M. Matsuo, Trans. Tech. Publ. 217–222, 821 (1996).Google Scholar
  9. 9.
    S. Kleiner, Ch Henkel, P. Schulz, and P. Uggowitzer, Aluminium 77, 185 (2001).Google Scholar
  10. 10.
    I. Kovacs, J. Lendvai, and E. Nagy, Acta Metall. 20, 975 (1972).CrossRefGoogle Scholar
  11. 11.
    R. Siddiqui, H. Abdullah, and K. Al-Belushi, J. Mater. Process. Technol. 102, 234 (2000).CrossRefGoogle Scholar
  12. 12.
    O. Myhr, O. Grong, and C. Schäfer, Metall. Mater. Trans. A 46A, 6018 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Jacobs, Philos. Mag. (1798–1977) 26, 1 (1972).CrossRefGoogle Scholar
  14. 14.
    S. Dumolt, D. Laughlin, and J. Williams, Scr. Metall. 18, 1347 (1984).CrossRefGoogle Scholar
  15. 15.
    G. Edwards, K. Stiller, G. Dunlop, and M. Couper, Acta Mater. 46, 3893 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Material SciencePaderborn UniversityPaderbornGermany
  2. 2.BENTELER Automotive GmbHPaderbornGermany
  3. 3.Department of Metal FormingNational Metallurgical Academy of UkraineDniproUkraine

Personalised recommendations