, Volume 71, Issue 2, pp 613–620 | Cite as

Effect of Microwave Irradiation Time on Structure, Morphology, and Supercapacitor Properties of Functionalized Graphene

  • Bo LiuEmail author
  • Hongjuan SunEmail author
  • Tongjiang Peng
  • Xiaolong Zhao
Energy Materials


To reveal the effects of microwave irradiation on the structure, morphology, and supercapacitor performance of p-phenylenediamine (PPD)-functionalized graphene materials (FG), FG was synthesized by using PPD as a functional modifier with the combination of hydrothermal reflux and microwave irradiation. The results showed that microwave irradiation could realize rapid reduction of functionalized graphene oxide (FGO). With increase of the irradiation time, the structural defects decreased while the sp2 plane domains increased. Moreover, the lamellae began to decompose into small aggregates. Before microwave irradiation treatment, FGO exhibited good supercapacitor performance with superior specific capacitance of 614.2 F g−1 at 0.5 A g−1. However, after microwave irradiation, the supercapacitor performance of FG got worse, and the configuration types of nitrogen atoms in the FG structure changed significantly. These results indicate that microwave irradiation is not conducive to improvement of the supercapacitor performance of FG.



This work was supported by the Doctoral Foundation of Southwest University of Science and Technology (Grant No. 18zx7104), National Natural Science Foundation of China (Grant No. 41772036; U1630132), and Scientific Research Plan for Longshan Academic Talents supported by Southwest University of Science and Technology (Grant No. 17LZXT11).

Supplementary material

11837_2018_3139_MOESM1_ESM.pdf (40 kb)
Supplementary material 1 (PDF 39 kb)


  1. 1.
    K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
  2. 2.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, and Y. Hu, Chem. Eng. J. 237, 411 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science 332, 1537 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Jo, T. Lee, H.J. Choi, J.H. Park, D.J. Lee, D.W. Lee, and B.S. Kim, Langmuir 27, 2014 (2011).CrossRefGoogle Scholar
  6. 6.
    S.T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, and A. Cao, J. Colloid Interface Sci. 351, 122 (2010).CrossRefGoogle Scholar
  7. 7.
    M.S. Park, S. Lee, and Y.S. Lee, Carbon Lett. 21, 1 (2017).CrossRefGoogle Scholar
  8. 8.
    R. Manna and S.K. Srivastava, Mater. Chem. Front. 1, 780 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Zahirifar, J. Karimi-Sabet, S.M.A. Moosavian, A. Hadi, and P. Khadiv-Parsi, Desalination 428, 227 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Liu, D. Li, L. Wang, H. Yang, X. Han, and B. Liu, Electrochim. Acta 230, 204 (2017).CrossRefGoogle Scholar
  11. 11.
    W. Deng, Y. Zhang, Y. Tan, and M. Ma, J. Electroanal. Chem. 787, 103 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Pandit and M. De, J. Phys. Chem. C 121, 600 (2017).CrossRefGoogle Scholar
  13. 13.
    M.M. Sk and C.Y. Yue, RSC Adv. 4, 19908 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Lu, F. Zhang, T. Zhang, K. Leng, L. Zhang, X. Yang, Y. Ma, Y. Huang, M. Zhang, and Y. Chen, Carbon 63, 508 (2013).CrossRefGoogle Scholar
  15. 15.
    Z. Liu, H. Zhou, Z. Huang, W. Wang, F. Zeng, and Y. Kuang, J. Mater. Chem. A 1, 3454 (2013).CrossRefGoogle Scholar
  16. 16.
    C.C. Caliman, A.F. Mesquita, D.F. Cipriano, J.C.C. Freitas, A.A.C. Cotta, W.A.A. Macedo, and A.O. Porto, RSC Adv. 8, 6136 (2018).CrossRefGoogle Scholar
  17. 17.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  18. 18.
    B. Liu, H. Sun, T. Peng, and G. Ji, JOM 67, 375 (2015).CrossRefGoogle Scholar
  19. 19.
    B. Liu, H. Sun, T. Peng, and G. Ji, J. Mol. Model. 19, 1429 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Eigler, C. Dotzer, and A. Hirsch, Carbon 50, 3666 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Tomita, T. Sakurai, H. Ohta, M. Fujii, and S. Hayashi, J. Chem. Phys. 114, 7477 (2001).CrossRefGoogle Scholar
  22. 22.
    H. Roghani-Mamaqani and V. Haddadi-Asl, Polym. Compos. 35, 386 (2014).CrossRefGoogle Scholar
  23. 23.
    W.S. Hung, C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, and J.Y. Lai, Chem. Mater. 26, 2983 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Liu, B. Yu, and T. Zhang, J. Mater. Chem. A 1, 13314 (2013).CrossRefGoogle Scholar
  25. 25.
    K. Kim, S. Yang, Y. Park, M. Lee, B.S. Kim, and H. Lee, J. Phys. Chem. C 117, 2129 (2014).CrossRefGoogle Scholar
  26. 26.
    K. Wang, L. Li, T. Zhang, and Z. Liu, Energy 70, 612 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Kumar and M. Khandelwal, New J. Chem. 38, 3457 (2014).CrossRefGoogle Scholar
  28. 28.
    X. Zhao, H. Sun, and T. Peng, Chem. J. Chin. Univ. 37, 728 (2016).Google Scholar
  29. 29.
    K. Pal, RSC Adv. 5, 3005 (2014).CrossRefGoogle Scholar
  30. 30.
    Z. Wang, X. Cao, J. Ping, Y. Wang, T. Lin, X. Huang, Q. Ma, F. Wang, C. He, and H. Zhang, Nanoscale 7, 9394 (2015).CrossRefGoogle Scholar
  31. 31.
    K. Chen, S. Song, F. Liu, and D. Xue, Chem. Soc. Rev. 44, 6230 (2015).CrossRefGoogle Scholar
  32. 32.
    G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, and T.S. Fisher, Electroanalysis 26, 30 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of National Defense Science and TechnologySouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource RecycleSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations