Advertisement

JOM

, Volume 71, Issue 1, pp 419–425 | Cite as

Fatigue Crack Growth Behavior of Al-4.41Cu-0.69Mg-0.64Si-0.52Mn Alloy Forged at Different Temperatures

  • Pengwei Li
  • Huizhong Li
  • Xiaopeng Liang
  • Lan Huang
Aluminum: New Alloys and Heat Treatment
  • 49 Downloads

Abstract

The fatigue crack growth (FCG) behavior of T6-aged Al-4.41Cu-0.69Mg-0.64Si-0.52Mn alloys forged at 350°C and 450°C were analyzed. FCG rate tests revealed that the alloy forged at 350°C exhibited a higher fatigue crack threshold (ΔKth) and lower FCG rate in the near-threshold region but a higher FCG rate in the Paris and instability regions than the alloy forged at 450°C. Examination of the crack paths suggested that intergranular propagations were predominant in the near-threshold region, and more crack deflections at grain boundaries contributed to the lower FCG rate of the recrystallized sample forged at 350°C. In the Paris and instability regions, transgranular propagations were predominant, and the lower FCG rate of the non-recrystallized sample forged at 450°C was attributed to the crack deflections between the dislocation walls and sub-grain boundaries.

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Number 51301209).

References

  1. 1.
    R.C. Alderliesten and J.J. Homan, Int. J. Fatigue 28, 1116 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Mater. Sci. Eng. A 280, 102 (2000).CrossRefGoogle Scholar
  3. 3.
    M.A. Khafri and A. Zargaran, JOM 62, 37 (2010).CrossRefGoogle Scholar
  4. 4.
    T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).CrossRefGoogle Scholar
  5. 5.
    P.W. Li, H.Z. Li, L. Huang, X.P. Liang, and Z.X. Zhu, Trans. Nonferrous Met. Soc. 27, 1677 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Vinogradov, J. Mater. Sci. 42, 1797 (2007).CrossRefGoogle Scholar
  7. 7.
    P.S. Pao, H.N. Jones, S.F. Cheng, and C.R. Feng, Int. J. Fatigue 27, 1164 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. Estrin and A. Vinogradov, Int. J. Fatigue 32, 898 (2010).CrossRefGoogle Scholar
  9. 9.
    N. Kamp, N. Gao, M.J. Starink, and I. Sinclair, Int. J. Fatigue 29, 869 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Yadollahpour, H.H. Toudeshky, and F. Karimzadeh, JOM 68, 1446 (2016).CrossRefGoogle Scholar
  11. 11.
    T. Hanlon, Y.N. Kwon, and S. Suresh, Scr. Mater. 49, 675 (2003).CrossRefGoogle Scholar
  12. 12.
    W.B. Shou, D.Q. Yi, H.Q. Liu, C. Tang, F.H. Shen, and B. Wang, Arch. Civ. Mech. Eng. 16, 304 (2016).CrossRefGoogle Scholar
  13. 13.
    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 4619 (1996).CrossRefGoogle Scholar
  14. 14.
    D.Y. Yin, H.Q. Liu, Y.Q. Chen, D.Q. Yi, B. Wang, B. Wang, F.H. Shen, S. Fu, C. Tang, and S.P. Pan, Int. J. Fatigue 84, 9 (2016).CrossRefGoogle Scholar
  15. 15.
    S.C.V. Lim and M.S. Yong, J. Mater. Process. Technol. 171, 393 (2006).CrossRefGoogle Scholar
  16. 16.
    L.L. Wei, Q.L. Pan, H.F. Huang, L. Feng, and Y.L. Wang, Int. J. Fatigue 66, 55 (2014).CrossRefGoogle Scholar
  17. 17.
    M.D. Sangid, H.J. Maier, and H. Sehitoglu, Int. J. Plast. 27, 801 (2011).CrossRefGoogle Scholar
  18. 18.
    H.G. Jian, F. Jiang, L.L. Wei, X.Y. Zheng, and K. Wen, Mater. Sci. Eng. A 527, 5879 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Merati, Int. J. Fatigue 27, 33 (2005).CrossRefGoogle Scholar
  20. 20.
    T. Zhai, A.J. Wilkinson, and J.W. Martin, Acta Mater. 48, 4917 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations