Advertisement

JOM

, Volume 71, Issue 1, pp 90–95 | Cite as

Effect of Infiltration of Barium Carbonate Nanoparticles on the Electrochemical Performance of La0.6Sr0.4Co0.2Fe0.8O3−δ Cathodes for Protonic Ceramic Fuel Cells

  • Jun Gao
  • Yuqing Meng
  • Shiwoo Lee
  • Jianhua Tong
  • Kyle S. BrinkmanEmail author
Advancement in Solid Oxide Fuel Cell Research
  • 135 Downloads

Abstract

BaCO3 nanoparticles were infiltrated into a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode as a synergistic catalyst to enhance the performance of proton conducting solid oxide fuel cells (H-SOFCs). Electrochemical impedance analysis showed that the polarization resistance was dramatically reduced by nearly 75% from 1.123 Ω cm2 to 0.293 Ω cm2 at 700°C after infiltration of BaCO3 nanoparticles. The chemical stability between the BaCO3 and LSCF electrode was investigated by running a long-term 300-h test, during which the polarization resistance exhibited only minor degradation (2.22–2.20 Ω cm2). In addition, single cells with infiltrated LSCF electrode and BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) electrolyte yielded a maximum power density of 404 mW cm−2 at 700°C, much higher than cells with a bare LSCF electrode (268 mW cm−2 at 700°C). BaCO3 demonstrated promising performance enhancements of LSCF electrodes for H-SOFCs and warrants further development.

Notes

Acknowledgements

K.S.B. was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. We also gratefully acknowledge financial support from the Department of Energy, Nuclear Energy Research Program (DOE-NEUP) Project: 17-12798: Nanostructured Ceramic Membranes for Enhanced Tritium Management.

References

  1. 1.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
  2. 2.
    Z. Zhan, Science 308, 844 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Park, J.M. Vohs, and R.J. Gorte, Nature 404, 265 (2000).CrossRefGoogle Scholar
  4. 4.
    S.M. Haile, Acta Mater. 51, 5981 (2003).CrossRefGoogle Scholar
  5. 5.
    E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Adv. Mater. 24, 195 (2012).CrossRefGoogle Scholar
  6. 6.
    J. An, Y.-B. Kim, J. Park, T.M. Gür, and F.B. Prinz, Nano Lett. 13, 4551 (2013).CrossRefGoogle Scholar
  7. 7.
    Z. Shao and S.M. Haile, Nature 431, 170 (2004).CrossRefGoogle Scholar
  8. 8.
    J. Gao, X. Meng, T. Luo, H. Wu, and Z. Zhan, Int. J. Hydrog. Energy 42, 18499 (2017).CrossRefGoogle Scholar
  9. 9.
    S.P. Jiang, Int. J. Hydrog. Energy 37, 449 (2012).CrossRefGoogle Scholar
  10. 10.
    X. Liu, H. Wu, Z. He, J. Gao, X. Meng, T. Luo, C. Chen, and Z. Zhan, Int. J. Hydrog. Energy 42, 18410 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Jiang, Solid State Ionics 146, 1 (2002).CrossRefGoogle Scholar
  12. 12.
    E. Perry, Murray. Solid State Ion. 148, 27 (2002).CrossRefGoogle Scholar
  13. 13.
    L. Lei, Z. Tao, T. Hong, X. Wang, and F. Chen, J. Power Sources 389, 1 (2018).CrossRefGoogle Scholar
  14. 14.
    G. Li, B. He, Y. Ling, J. Xu, and L. Zhao, Int. J. Hydrog. Energy 40, 13576 (2015).CrossRefGoogle Scholar
  15. 15.
    B. He, L. Zhang, Y. Zhang, D. Ding, J. Xu, Y. Ling, and L. Zhao, J. Power Sources 287, 170 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Hong, K.S. Brinkman, and C. Xia, ChemElectroChem 3, 805 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Li, Z. Sun, W. Yang, T. Hong, Z. Zhu, Y. Zhang, X. Wu, and C. Xia, Phys. Chem. Chem. Phys. 19, 503 (2017).CrossRefGoogle Scholar
  18. 18.
    L. Zhang, T. Hong, Y. Li, and C. Xia, Int. J. Hydrog. Energy 42, 17242 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. Yang, M. Li, Y. Ren, Y. Li, and C. Xia, Int. J. Hydrog. Energy 43, 3797 (2018).CrossRefGoogle Scholar
  20. 20.
    J. Martynczuk, M. Arnold, H. Wang, J. Caro, and A. Feldhoff, Adv. Mater. 19, 2134 (2007).CrossRefGoogle Scholar
  21. 21.
    C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R.O. Hayre, Science 349, 1321 (2015).CrossRefGoogle Scholar
  22. 22.
    A.R. Hanifi, N.K. Sandhu, T.H. Etsell, and P. Sarkar, J. Am. Ceram. Soc. 100, 4983 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B36 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringClemson UniversityClemsonUSA
  2. 2.U.S. Department of EnergyNational Energy Technology LaboratoryMorgantownUSA
  3. 3.AECOMMorgantownUSA

Personalised recommendations