Advertisement

JOM

, Volume 70, Issue 11, pp 2435–2442 | Cite as

Post-mortem Study of Magnesia–Chromite Refractory Used in a Submerged Arc Furnace in the Copper-Making Process

  • Ismael PérezEmail author
  • Ignacio Moreno-Ventas
  • Roberto Parra
  • Guillermo Ríos
Refractory Materials for Metallurgical Uses

Abstract

The periodical relining of furnaces because of refractory wear is a cost driver in the copper-making industry. This paper presents a post-mortem study of the refractory lining of a submerged arc furnace used in slag-cleaning operations at the Atlantic Copper Smelter (Spain) after a 6-year campaign. Samples were taken from different locations in the area in contact with slag and analyzed using a scanning electron microscope equipped with an energy dispersive spectroscopy system. New phases were generated as a consequence of the chemical interaction between the molten slag in the bath and the magnesia–chromite refractory lining. The chemical dissolution of the magnesia of the refractory and the incorporation of iron from the slag in the refractory phases were the main drivers. From this interaction, a reaction layer on the hot face of the refractory was formed, whose properties differ from the as-delivered refractory.

Notes

Acknowledgments

This work was carried out with financial support from Atlantic Copper S.L.U., which collaborates extensively with the University of Huelva. The authors wish to express their gratitude for this support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed. (Oxford: Elsevier Science Ltd., 2002).Google Scholar
  2. 2.
    J.P. Sancho, L.F. Verdeja, A. Ballester, Metalurgia Extractiva. Volumen II: Procesos de obtención, 1st ed. (Madrid, Spain: Sintesis, 2000).Google Scholar
  3. 3.
    A. Malfliet, S. Lotfian, L. Scheunis, V. Petkov, L. Pandelaers, P.T. Jones, and B. Planpain, J. Eur. Ceram. Soc. 34, 849 (2014).  https://doi.org/10.1016/j.jeurceramsoc.2013.10.005.CrossRefGoogle Scholar
  4. 4.
    M.E. Schlesinger, Miner. Process. Extr. Metall. Rev. 16, 125 (1996).CrossRefGoogle Scholar
  5. 5.
    V. Petkov, P.T. Jones, E. Boydens, B. Blanpain, and P. Wollants, J. Eur. Ceram. Soc. 27, 2433 (2007).  https://doi.org/10.1016/j.jeurceramsoc.2006.08.020.CrossRefGoogle Scholar
  6. 6.
    H. Barthel, Interceramics 30, 250 (1981).Google Scholar
  7. 7.
    T. Taschler, Refractory materials for the copper and lead industry, in: Proceedings of Tehran international conference on refractories 302–320, 4–6 May 2004.Google Scholar
  8. 8.
    A.J. Rigby, Wear mechanisms of refractory linings of converters and anode furnaces, in: Proceedings of the EPD congress 1993 converting, fire refining and casting 155–168.Google Scholar
  9. 9.
    L. Chen, S. Li, P.T. Jones, M. Guo, B. Blanpain, and A. Malfliet, J. Eur. Ceram. Soc. 36, 2119 (2016).CrossRefGoogle Scholar
  10. 10.
    V.V. Slovikovskii and A.V. Gulyaeva, Refract. Ind. Ceram 54, 39 (2014).  https://doi.org/10.1007/s11148-014-9633-z.CrossRefGoogle Scholar
  11. 11.
    S. Zhang, Brit. Ceram. T. 99, 248 (2013).  https://doi.org/10.1179/096797800681036.CrossRefGoogle Scholar
  12. 12.
    C. Goñi, Desarrollo y aplicación de modelos de corrosión refractaria para un Convertidor Peirce Smith, Ph.D., Universidad de Concepción, (2004).Google Scholar
  13. 13.
    P.T. Jones, J. Vleugels, I. Volders, B. Blanpain, O. Van der Biest, and P. Wollants, J. Eur. Ceram. Soc. 22, 903 (2002).  https://doi.org/10.1016/S0955-2219(00)00343-5.CrossRefGoogle Scholar
  14. 14.
    G. Gregurek, T. Prietl, S.B. Breyner, A. Ressler, and N.M. Berghofer, Platinum 2012 (The Southern African Institute of Mining and Metallurgy, 2012), pp. 251–260.Google Scholar
  15. 15.
    D. Gregurek and C. Majcenovic, RHI Bull. 1, 17 (2003).Google Scholar
  16. 16.
    C. Fasching, D. Gruber, and H. Harmuth, J. Eur. Ceram. Soc. 35, 4593 (2015).  https://doi.org/10.1016/j.jeurceramsoc.2015.08.012.CrossRefGoogle Scholar
  17. 17.
    H. Dong, H.J. Wang, and S.J. Chu, J. S. Afr. I. Min. Metall. 114, 489 (2014).Google Scholar
  18. 18.
    J. Branbacka and H. Saxen, Ind. Eng. Chem. 47, 7793 (2008).CrossRefGoogle Scholar
  19. 19.
    R. Parra, L.F. Verdeja, M.F. Barbés, C. Goñi, and V. Bazán, JOM 57, 29 (2005).CrossRefGoogle Scholar
  20. 20.
    L.F. Verdeja, R. Parra, R. Parada, A. Alfonso, C. Marcos, C. Goñi, and M.F. Barbés, Bol. Soc. Esp. Cerám. Vidrio 43, 203 (2004).CrossRefGoogle Scholar
  21. 21.
    C. Goñi, M.F. Barbés, V. Bazán, E. Brandaleze, R. Parra, and L.F. Verdeja, J. Ceram. Soc. Jpn. 118, 672 (2006).CrossRefGoogle Scholar
  22. 22.
    L.F. Verdeja, R. Parra, J.P. Sancho, and J. Bullón, ISIJ Int. 43, 192 (2003).CrossRefGoogle Scholar
  23. 23.
    R. Parra, J. Mochón, R. Martín, J.I. Verdeja, M.F. Barbés, L.F. Verdeja, N. Kanari, and I. Ruiz-Bustinza, Inst. Mater. Miner. Min. 36, 529 (2009).  https://doi.org/10.1179/174328109X443329.CrossRefGoogle Scholar
  24. 24.
    M.F. Barbés-Fernández, E. Marinas-García, E. Brandaleze, R. Parra-Figueroa, L.F. Verdeja-González, G.A. Castillo-Rodríguez, and R. Colás, ISJIJ Int. 48, 134 (2008).CrossRefGoogle Scholar
  25. 25.
    N. Cardona, P.J. Mackey, P. Coursol, R. Parada, and R. Parra, JOM 64, 546 (2012).  https://doi.org/10.1007/s11837-012-0329-x.CrossRefGoogle Scholar
  26. 26.
    K.S. Kwong, J. Bennett, R. Krabbe, A. Petty, H. Thomas, Thermodynamic calculations predicting MgO saturated EAF slag for use in EAF steel production, The Minerals, Metals and Material Society (TMS) Supplemental Proceedings v2 (2009) 63–70.Google Scholar
  27. 27.
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen, CALPHAD 26, 189 (2002).  https://doi.org/10.1016/S0364-5916(02)00035-4.CrossRefGoogle Scholar
  28. 28.
    C.W. Bake, E. Bélisle, P. Chartrand., S.A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A.D. Pelton, C. Robelin, S. Petersen, CALPHAD 33 (2009), 295.  https://doi.org/10.1016/j.calphad.2008.09.009.CrossRefGoogle Scholar
  29. 29.
    A.E. Gheribi, C. Audet, S. Le Digabel, E. Bélisle, C.W. Bale, and A.D. Pelton, CALPHAD 36, 135 (2012).  https://doi.org/10.1016/j.calphad.2011.06.003.CrossRefGoogle Scholar
  30. 30.
    A.E. Gheribi, C. Robelin, S. Le Digabel, C. Audet, and A.D. Pelton, J. Chem. Thermodyn. 43, 1323 (2011).  https://doi.org/10.1016/j.jct.2011.03.021.CrossRefGoogle Scholar
  31. 31.
    H. Wang and D. Sichen, Metall. Trans. B 47, 1858 (2016).  https://doi.org/10.1007/s11663.CrossRefGoogle Scholar
  32. 32.
    H. Wang, B. Glaser, and D. Sichen, Metall. Trans. B 46, 749 (2015).  https://doi.org/10.1007/s11663-014-0277-7.CrossRefGoogle Scholar
  33. 33.
    A.H. De Aza, Bol. Soc. Esp. Cerám. Vidrio 35, 87 (1996).Google Scholar
  34. 34.
    M.S. Fedorov, L.N. Ertseva, L.B. Tsymbulov, Refract. Ind. Ceram. 46(5) 309.  https://doi.org/10.1007/s11148-006-0003-3.CrossRefGoogle Scholar
  35. 35.
    S.V. Mulevanov, V.M. Nartsev, V.A. Doroganov, E.A. Doroganov, and S.V. Zaitsev, Refract. Ind. Ceram. 53, 226 (2012).  https://doi.org/10.1007/s11148-012-9510-6.CrossRefGoogle Scholar
  36. 36.
    L. Chen, M. Guo, H. Shi, L. Scheunis, P.T. Jones, B. Blanpain, and A. Malfliet, J. Eur. Ceram. Soc. 35, 2641 (2015).  https://doi.org/10.1016/j.jeurceramsoc.2015.03.013.CrossRefGoogle Scholar
  37. 37.
    M.H. Hon, C.C. Hsu, and M.C. Wang, Mater. Trans. 49, 107 (2008).CrossRefGoogle Scholar
  38. 38.
    G.R. Rigby and B. Hamilton, J. Am. Ceram. Soc. 44, 201 (1961).CrossRefGoogle Scholar
  39. 39.
    E. Prestes, A.S.A. Chinelatto, and W.S. Resende, Ceramica 55, 61 (2009).  https://doi.org/10.1590/S0366-69132009000100008.CrossRefGoogle Scholar
  40. 40.
    I. Pérez, I. Moreno-Ventas, and G. Ríos, Ceram. Int. 44, 13476 (2018).  https://doi.org/10.1016/j.ceramint.2018.04.168.CrossRefGoogle Scholar
  41. 41.
    A.H. Jafari and M. Karaminezhaad, IJE Trans. 16, 71 (2003).Google Scholar
  42. 42.
    D.L. Whitney and B.W. Evans, Am. Miner. 95, 185 (2010).  https://doi.org/10.2138/am.2010.3371.CrossRefGoogle Scholar
  43. 43.
    K. Goto and W.E. Lee, J. Am. Ceram. Soc. 78, 1753 (1995).  https://doi.org/10.1111/j.1151-2916.1995.tb08885.x.CrossRefGoogle Scholar
  44. 44.
    S.M. Zubakov and A.L. Dyukov, Refract. Ind. Ceram 9, 54 (1972).  https://doi.org/10.1007/BF01285772.CrossRefGoogle Scholar
  45. 45.
    V. Bazán, E. Brandaleze, R. Parra, and C. Goñi, Dyna 179, 48 (2012).Google Scholar
  46. 46.
    G.R. Rigby, Trans. Met. Soc. AIME 224, 887 (1962).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Earth Science, Facultad de Ciencias ExperimentalesUniversity of HuelvaHuelvaSpain
  2. 2.Atlantic Copper S.L.U.HuelvaSpain
  3. 3.Centro de Investigación en Química Sostenible (CIQSO)University of HuelvaHuelvaSpain
  4. 4.Departamento de MetalurgicaUniversity of ConcepciónConcepciónChile

Personalised recommendations