Advertisement

JOM

, Volume 70, Issue 11, pp 2428–2434 | Cite as

Copper Anode Furnace: Chemical, Mineralogical and Thermo-Chemical Considerations of Refractory Wear Mechanisms

  • D. Gregurek
  • J. Schmidl
  • K. Reinharter
  • V. Reiter
  • A. Spanring
Refractory Materials for Metallurgical Uses
  • 100 Downloads

Abstract

In copper anode furnaces, the installed refractory lining is exposed to chemical attack caused by slag and copper oxide. This results in infiltration of the brick microstructure and corrosion of the bricks’ inherent components. Increased temperature level changes the temperature and partial pressure during the furnace operation, as well as the copper infiltration into the brick microstructure, leading to further degeneration of the microstructure and decreased lining life. The mechanical load includes the erosion caused by primary movement of the metal bath, slag and charging material, as well as stresses in the brickwork due to improper lining procedures. Thus, chemical and mineralogical investigation carried out on “post-mortem samples”, together with thermochemical calculations by FactSage™ software, enables better understanding of refractory wear in the copper anode furnace.

References

  1. 1.
    W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed. (Oxford: Elsevier, 2002), pp. 247–264.CrossRefGoogle Scholar
  2. 2.
    G. Routschka, Handbook of Refractory Materials, 4th ed. (Essen: Vulkan, 2012), p. 505.Google Scholar
  3. 3.
    H. Barthel, Interceram 30, 250 (1981).Google Scholar
  4. 4.
    V. Petkov, P.T. Jones, E. Boydens, B. Blanpain, and P. Wollants, Proceedings of the 47th International Colloqium on Refractories Vol. 1, (Aachen, Germany, 2004), pp. 125–131.Google Scholar
  5. 5.
    A. Malfliet, S. Lotfian, L. Scheunis, V. Petkov, L. Pandelaers, P.T. Jones, and B. Blanpain, J. Eur. Ceram. Soc. 34, 849 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Harmuth and S. Vollmann, Iron Steel Rev. 58, 157 (2014).Google Scholar
  7. 7.
    P. Mackey, Can. Metall. Q. 21, 221 (1982).CrossRefGoogle Scholar
  8. 8.
    M. Sarhadi, E. Niknejad, and H. Yoozbashizadeh, Fire Refining of CopperAs, Sb and Bi Removal by Basic Oxidation with Decreased Refractory Wear (Copper, Santiago, Chile, 2013), pp. 99–107.Google Scholar
  9. 9.
    C. Yamauchi, Application of Sodium Carbonate Slag to Copper Refining (San Diego: TMS, 2003), p. 3.Google Scholar
  10. 10.
    G. Alvear, D. Cordero, and J. Font, Proceedings of the 6th International Copper-Cobre Conference (Toronto, Canada, 2007), pp. 647–660.Google Scholar
  11. 11.
    C.-Y. Hu, K. Shih, and J.O. Leckie, J. Hazard. Mater. 181, 399 (2010).CrossRefGoogle Scholar
  12. 12.
    D. Gregurek, C. Wenzl, K.D. Kreuzer, A. Spanring, M. Kirschen, D. Zeelie, and J. Groenewald, JOM 68, 3029 (2016).CrossRefGoogle Scholar
  13. 13.
    K.T. Jacob and C.B. Alcock, J. Am. Ceram. Soc. 58, 192 (1975).CrossRefGoogle Scholar
  14. 14.
    D. Gregurek, K. Reinharter, C. Majcenovic, C. Wenzl, and A. Spanring, J. Eur. Ceram. Soc. 35, 1683 (2015).CrossRefGoogle Scholar
  15. 15.
    F. Trojer, K.-H. Obst, and W. Münchberg, Mineralogie basischer Feuerfest-Produkte (Wien: Springer, 1981), p. 180.CrossRefGoogle Scholar
  16. 16.
    M. Paranthaman, K.A. David, and T.B. Lindemer, Mater. Res. Bull. 32, 165 (1997).CrossRefGoogle Scholar
  17. 17.
    C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, Calphad 62, 189 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • D. Gregurek
    • 1
  • J. Schmidl
    • 2
  • K. Reinharter
    • 1
  • V. Reiter
    • 1
  • A. Spanring
    • 2
  1. 1.RHI Magnesita, TC LeobenLeobenAustria
  2. 2.RHI MagnesitaViennaAustria

Personalised recommendations