, Volume 71, Issue 1, pp 366–372 | Cite as

Characterization of the Aging Precipitates of Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd Piston Alloy

  • Yudong Sui
  • Depeng Ji
  • Lina HanEmail author
  • Qudong WangEmail author
Aluminum: New Alloys and Heat Treatment


The aging precipitates of cast-T6 Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd piston alloy were investigated. Microstructure observations indicate that the thermally unstable θ-Al2Cu precipitates disappeared inside the grains and the thermally stable Al3CuGd precipitates were formed at the grain boundary. The Al3CuGd precipitates were formed more easily than Al2Cu phases according to the ab initio calculations. Owing to the combined strengthening effect of precipitates, the Al-Si-Cu-Ni-Mg-Gd alloy has a higher tensile strength than the Al-Si-Cu-Ni-Mg alloy. The disappearance of the unstable θ-Al2Cu precipitates and the formation of Al3CuGd at the grain boundary facilitate the increase in the elevated-temperature strength of the Al-Si-Cu-Ni-Mg-Gd alloy.



This work was supported by the China Postdoctoral Science Foundation (Grant Numbers 2017M623319XB, 2018T110999) and Yunnan Provincial Department of Education Science Research Fund Project (No. 2018JS033).

Supplementary material

11837_2018_3080_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 92 kb)


  1. 1.
    M. Schöbel, G. Baumgartner, S. Gerth, J. Bernardi, and M. Hofmann, Acta Mater. 81, 401 (2014).CrossRefGoogle Scholar
  2. 2.
    Z. Asghar, G. Requena, and E. Boller, Acta Mater. 59, 6420 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Sheng, Z. Tao, P. Jia, J. Leng, and H. Geng, JOM 67, 330 (2015).CrossRefGoogle Scholar
  4. 4.
    P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, and T. Shibata, Acta Mater. 65, 185 (2014).CrossRefGoogle Scholar
  5. 5.
    P. Sepehrband, R. Mahmudi, and F. Khomamizadeh, Scr. Mater. 52, 253 (2005).CrossRefGoogle Scholar
  6. 6.
    S.O. Adeosun, E.I. Akpan, S.A. Balogun, and O.K. Onoyemi, JOM 67, 916 (2015).CrossRefGoogle Scholar
  7. 7.
    A.R. Farkoosh, X. Grant Chen, and M. Pekguleryuz, Mater. Sci. Eng., A 627, 181 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Du, J. Deng, Y. Wang, D. Yan, and L. Rong, Scr. Mater. 61, 532 (2009).CrossRefGoogle Scholar
  9. 9.
    L. Zuo, B. Ye, J. Feng, X. Kong, H. Jiang, and W. Ding, Mater. Sci. Eng., A 693, 26 (2015).CrossRefGoogle Scholar
  10. 10.
    A.R. Farkoosh and M. Pekguleryuz, Mater. Sci. Eng., A 621, 277 (2015).CrossRefGoogle Scholar
  11. 11.
    S.P. Wen, K.Y. Gao, Y. Li, H. Huang, and Z.R. Nie, Scr. Mater. 65, 592 (2011).CrossRefGoogle Scholar
  12. 12.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Thermochim. Acta 595, 11 (2014).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, Mater. Sci. Eng., A 552, 230 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Sui, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, J. Alloys Compd. 644, 228 (2015).CrossRefGoogle Scholar
  15. 15.
    J.H. Sokolowski, C.A. Kierkus, and D.O. Northwood, J. Mater. Process. Technol. 109, 174 (2001).CrossRefGoogle Scholar
  16. 16.
    L. Han, Y. Sui, Q. Wang, K. Wang, and Y. Jiang, J. Alloys Compd. 695, 1566 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Biswas, D.J. Siegel, and D.N. Seidman, Acta Mater. 75, 322 (2014).CrossRefGoogle Scholar
  18. 18.
    D.J. Chakrabarti and D.E. Laughlin, Prog. Mater Sci. 49, 389 (2004).CrossRefGoogle Scholar
  19. 19.
    N. Belov, D. Eskin, and N. Avxentieva, Acta Mater. 53, 4709 (2005).CrossRefGoogle Scholar
  20. 20.
    Z. Qian, X. Liu, D. Zhao, and G. Zhang, Mater. Lett. 62, 2146 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.National Engineering Research Center of Light Alloys Net FormingShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations