Advertisement

JOM

, Volume 70, Issue 10, pp 2027–2032 | Cite as

Removal of Phosphorus from Leach Liquor of Steel Slag: Adsorption Dephosphorization with Activated Alumina

  • Jiang Diao
  • Lixiong Shao
  • Deman Liu
  • Yong Qiao
  • Wenfeng Tan
  • Liang Wu
  • Bing Xie
Solution Purification Technology

Abstract

Leaching dephosphorization is an effective way to remove the harmful element phosphorus from steel slags. In order to recycle the leach liquor, static phosphate adsorption with activated aluminum oxides was investigated in this work. It was demonstrated that, for an initial phosphorus concentration of 25.95 mg/L, a phosphorus removal rate of 88% and an adsorption capacity of 0.72 mg/g can be reached under the optimal conditions of adsorption time of 34 h, adsorbent dose of 40 g/L, pH of 6.3, and adsorbent particle size of 1.18–2 mm. The Freundlich model and pseudo-second-order-kinetic model can describe the adsorption process well. It was shown that adsorption of phosphorus on the surface of activated alumina particles was a multi-molecular-layer process whose kinetics was controlled by the adsorption reaction.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51604047) and Large Instrument Foundation of Chongqing University (Grants 201712150115, 201712150036, and 201712150109).

References

  1. 1.
    H. Ono, A. Inagaki, T. Masui, H. Narita, S. Nosaka, and T. Mitsuo, ISIJ Int. 21, 135 (1980).CrossRefGoogle Scholar
  2. 2.
    T. Fujita and I. Iwasaki, Iron Steelmak. 16, 47 (1989).Google Scholar
  3. 3.
    H. Kubo, M.Y. Kazuyo, and T. Nagasaka, ISIJ Int. 50, 59 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Diao, B. Xie, Y. Wang, and X. Guo, ISIJ Int. 52, 955 (2012).CrossRefGoogle Scholar
  5. 5.
    B. Wu, Ph.D. Thesis, Doctoral dissertation, Central South University, 2009.Google Scholar
  6. 6.
    Y. Qiao, J. Diao, X. Liu, X. Li, T. Zhang, and B. Xie, JOM 68, 1 (2015).Google Scholar
  7. 7.
    D.L. Correll, J. Environ. Qual. 27, 261 (1998).CrossRefGoogle Scholar
  8. 8.
    J.S. Čech, P. Hartman, and J. Wanner, Water Environ. Res. 65, 690 (1993).CrossRefGoogle Scholar
  9. 9.
    K. Urano and H. Tachikawa, Ind. Eng. Chem. Res. 30, 1513 (2002).Google Scholar
  10. 10.
    N. Kawasaki, F. Ogata, and H. Tominaga, J. Hazard. Mater. 181, 574 (2010).CrossRefGoogle Scholar
  11. 11.
    A.F.D. Sousa, T.P. Braga, E.C.C. Gomes, A. Valentini, and E. Longhinotti, Chem. Eng. J. 210, 143 (2012).CrossRefGoogle Scholar
  12. 12.
    J. Xie, Y. Lin, C. Li, D. Wu, and H. Kong, Powder Technol. 269, 351 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, and T. Tamura, J. Colloid Interface Sci. 257, 135 (2003).CrossRefGoogle Scholar
  14. 14.
    M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, ISIJ Int. 54, 1983 (2014).CrossRefGoogle Scholar
  15. 15.
    L.H. Zhao and L.H. Xu, Experimental Technique of Molecular Medicine (Zhengjiang: Zhejiang University Press, 2014), p. 37.Google Scholar
  16. 16.
    H. Song, Pharmaceutical Separation Engineering (Shanghai: East China University of Science and Technology Press, 2011), p. 207.Google Scholar
  17. 17.
    I. Langmuir, J. Am. Chem. Soc. 39, 1848 (1917).CrossRefGoogle Scholar
  18. 18.
    H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906).Google Scholar
  19. 19.
    F.X. Chen, C.R. Zhou, G.P. Li, and F.F. Peng, Arab. J. Chem. 9, 1665 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Toor and B. Jin, Chem. Eng. J. 187, 79 (2012).CrossRefGoogle Scholar
  21. 21.
    T.C. Chen, J.F.F. Sapitan, F.C.B. Jr, and M.C. Lu, J. Clean. Prod. 124, 378 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jiang Diao
    • 1
    • 2
  • Lixiong Shao
    • 1
    • 2
  • Deman Liu
    • 1
    • 2
  • Yong Qiao
    • 1
    • 2
  • Wenfeng Tan
    • 1
    • 2
  • Liang Wu
    • 1
    • 2
  • Bing Xie
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced MaterialsChongqingPeople’s Republic of China

Personalised recommendations