Advertisement

JOM

, Volume 70, Issue 10, pp 2033–2040 | Cite as

Removal of Antimony and Bismuth from Copper Electrorefining Electrolyte: Part I—A Review

  • Andrew Artzer
  • Michael Moats
  • Jack Bender
Solution Purification Technology
  • 102 Downloads

Abstract

Antimony and bismuth are two of the most problematic impurities in copper electrorefining. As a result, much research has been done investigating the ways to remove them. Processes that are currently being used industrially include anode additions, liberators, ion exchange (IX), and solvent extraction (SX). Of these, liberators and anode additions are the most common while SX is the least, mostly being used for arsenic removal. Other methods have been evaluated, but they are not in commercial use. These include the use of various electrolyte additives, as well as adsorbents such as bentonite clay and heavy metal sulfates.

References

  1. 1.
    E.S. Bardwell and R.J. Lapee, Trans. Soc. Min. Eng. AIME 1, 417 (1933).Google Scholar
  2. 2.
    J. Bender and N. Emmerich, Copper 2016, 1128 (2016).Google Scholar
  3. 3.
    B.t J. Hiskey, in T. T. Chen Honorary Symp. Hydrometall., Electrometall. Mater. Charact., Proc., 101 (2012).Google Scholar
  4. 4.
    S. Acharya, Adv. Mater. Res. (Durnten-Zurich, Switz.) 828, 93 (2014).Google Scholar
  5. 5.
    T. Shibata, M. Hashiuchi, and T. Kato, Copper 87, 99 (1987).Google Scholar
  6. 6.
    A.K. Biswas, W.G. Davenport, and D.W. Hopkins, Extractive Metallurgy of Copper, 2nd ed. (Oxford: Pergamon Press, 1980), pp. 310–312.Google Scholar
  7. 7.
    S. Wang, JOM 56, 34 (2004).CrossRefGoogle Scholar
  8. 8.
    V. Stoyanova, K. Nedeleva, A. Saraev, L. Gerov, and V. Stoyanova, Copper 2016, 1957 (2016).Google Scholar
  9. 9.
    B.C. Wesstrom and O. Araujo, in T. T. Chen Honorary Symp. Hydrometall., Electrometall. Mater. Charact., Proc., 151 (2012).Google Scholar
  10. 10.
    K. Ando and N. Tsuchida, JOM 49, 49 (1997).CrossRefGoogle Scholar
  11. 11.
    D.B. Dreisinger and B.J.Y. Scholey, Copper 95, 305 (1995).Google Scholar
  12. 12.
    I.M. Santos Morales, Copper 7, 139 (2007).Google Scholar
  13. 13.
    S. Abe and Y. Takasawa, Copper 87, 87 (1987).Google Scholar
  14. 14.
    F. Xiao, J. Mao, D. Cao, X. Shen, and A.A. Volinsky, Hydrometallurgy 125–126, 76 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Fa-Xin, Z. Ya-jie, W. Yong, X. Wei, L. Chun-hua, and J. Hong-shang, Trans. Nonferrous Met. Soc. China 17, 1069 (2007).CrossRefGoogle Scholar
  16. 16.
    W. Xue-Wen, C. Qi-Yuan, Y. Zhou-Lan, and X. Lian-Sheng, Hydrometallurgy 84, 211 (2006).CrossRefGoogle Scholar
  17. 17.
    X. Fa-Xin, Z. Ya-jie, W. Yong, J. Hong-shang, H. Xing-Guan, and M. Yu-Tian, Trans. Nonferrous Met. Soc. China 18, 1275 (2008).CrossRefGoogle Scholar
  18. 18.
    E.N. Petkova, Hydrometallurgy 46, 277 (1997).CrossRefGoogle Scholar
  19. 19.
    X. Fa-Xin, Z. Ya-jie, W. Yong, J. Hong-shang, L. Chun-hua, X. Wei, and M. Yu-Tian, Trans. Nonferrous Met. Soc. China 18, 474 (2008).CrossRefGoogle Scholar
  20. 20.
    B.P. Kamath, A.K. Mitra, S. Radhakrishnan, and K.P. Shetty, Copper 2003, 137 (2003).Google Scholar
  21. 21.
    W. Zeng, S. Wang, and M.L. Free, Metall. Mater. Trans. B 47, 3178 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Szymanowski, Miner. Process. Extr. Metall. Rev. 18, 389 (1998).CrossRefGoogle Scholar
  23. 23.
    P. Navarro, J. Simpson, and F.J. Alguacil, Hydrometallurgy 53, 121 (1999).CrossRefGoogle Scholar
  24. 24.
    K. Toyabe, C. Segawa, and H. Sato, Copper 87, 117 (1987).Google Scholar
  25. 25.
    P. Navarro and F.J. Alguacil, Hydrometallurgy 66, 101 (2002).CrossRefGoogle Scholar
  26. 26.
    B. Gabai, N.A.A. dos Santos, D.C.S. Azevêdo, S. Brandani, and C.L. Cavalcante Jr, Braz. J. Chem. Eng. 14, 153 (1997).CrossRefGoogle Scholar
  27. 27.
    I. Ruiz, G. Rios, C. Arbizu, I. Burke, and U. Hanschke, in Eur. Metall. Conf., 1 (2013).Google Scholar
  28. 28.
    F. Arroyo-Torralvo, A. Rodríguez-Almansa, I. Ruiz, I. González, G. Ríos, C. Fernández-Pereira, and L.F. Vilches-Arenas, Hydrometallurgy 171, 285 (2017).CrossRefGoogle Scholar
  29. 29.
    L. Navarro, T. Morris, and W. Read, Copper 2013, 261 (2014).Google Scholar
  30. 30.
    R.L. Bruening, J.B. Dale, N.E. Izatt, and S.R. Izatt, Hydrometallurgy 1, 24 (2003).Google Scholar
  31. 31.
    W. Jin, P.I. Laforest, A. Luyima, W. Read, L. Navarro, and M.S. Moats, RSC Adv. 5, 50372 (2015).CrossRefGoogle Scholar
  32. 32.
    T. Nagai and Y. Echigo, Patent 4559216, 17 (1985).Google Scholar
  33. 33.
    J. Ahn and J. Jae-Seong Seo, Korean Inst. Resour. Recycl. 21, 50 (2012).Google Scholar
  34. 34.
    Y. Sasaki, S. Kawai, Y. Takasawa, and S. Furuya, Copper 91, 245 (1991).Google Scholar
  35. 35.
    T. Nagai, Miner. Process. Extr. Metall. Rev. 17, 143 (1997).CrossRefGoogle Scholar
  36. 36.
    R. Schulze, Patent 3696012, 3 Oct (1972).Google Scholar
  37. 37.
    M. Cifuentes, G. Cifuentes, J. Simpson, and C. Zuniga, Copper 2013, 237 (2014).Google Scholar
  38. 38.
    R. M. Cunningham, J. V. Calara, and M. G. King, in EPD Congr. 1997, Proc. Sess. Symp., 453 (1997).Google Scholar
  39. 39.
    P.A. Riveros, Hydrometallurgy 105, 110 (2010).CrossRefGoogle Scholar
  40. 40.
    R. Shaw and J. Illescas, Copper 2007, 675 (2007).Google Scholar
  41. 41.
    M.E. Davis, Ind. Eng. Chem. Res. 30, 1675 (1991).CrossRefGoogle Scholar
  42. 42.
    K. Salari, S. Hashemian, and M.T. Baei, Trans. Nonferrous Met. Soc. China 27, 440 (2017).CrossRefGoogle Scholar
  43. 43.
    O.V.J. Hyvarinen, Patent 4157946, 12 June (1979).Google Scholar
  44. 44.
    X. Wang, Q. Chen, Z. Yin, P. Zhang, Z. Long, and Z. Su, Hydrometallurgy 69, 39 (2003).CrossRefGoogle Scholar
  45. 45.
    N.V. Deorkar and L.L. Tavlarides, Hydrometallurgy 46, 121 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Materials Research CenterMissouri S&TRollaUSA
  2. 2.BASFTucsonUSA

Personalised recommendations