Advertisement

JOM

, Volume 70, Issue 11, pp 2529–2536 | Cite as

Optimization of Multi-phase Mo-12Si-8.5B Alloy by SiC Whisker

  • Bin Li
  • Xiaohui Lin
  • Guojun Zhang
  • Laiping LiEmail author
  • Pingxiang Zhang
Recent Advances in Design and Development of Refractory Metals and Alloys

Abstract

Fine-grained and multi-phase Mo-Si-B alloy contains many grain/phase interfaces, which allows for optimizing its performances by modifying its interfaces. Based on the structure design, this study introduces the SiC whisker in a multi-phase Mo-Si-B alloy. The Mo-12Si-8.5B-SiC alloy, which used a liquid–liquid doping method to mix the SiC whiskers in the mechanical alloyed powder, was also synthesised by hot pressing. The microstructure, strength and toughness were experimentally examined, and the solid-state reaction and thermodynamic calculations were analysed to evaluate the effect of the SiC whisker. Microstructural observations showed that the SiC addition could regulate the phase constitution by markedly increasing the intermetallic content and, moreover, decrease the α-Mo content in the Mo-Si-B alloy. This effect resulted in a change in the microstructure, which was transformed from a continuous α-Mo matrix of the SiC-free Mo-12Si-8.5B alloy to a fine-grained intermetallic matrix of the Mo-12Si-8.5B-SiC alloy. Some SiO2 particles distributed at the grain and phase boundaries could be decreased by the SiC addition, which was mainly related to the grain/phase boundary purifying effect derived from the interfacial reactions of the whisker and matrix. The high strength of the intermetallic matrix with a small amount of silica in the Mo-Si-B-SiC alloy is beneficial for enhancing the strength and fracture toughness.

Notes

Acknowledgements

This subject was supported by the National Natural Science Foundation of China (Grant Nos. 51701162 and 51674196), the China Postdoctoral Science Foundation (Grant No. 2016M602885), and the Shaanxi Postdoctoral Research Program (Grant No. 2016BSHEDZZ07).

References

  1. 1.
    K.S. Kumar and A.P. Alur, Intermetallics 15, 687 (2007).CrossRefGoogle Scholar
  2. 2.
    N. Nomura, T. Suzuki, K. Yoshimi, and S. Hanada, Intermetallics 11, 735 (2003).CrossRefGoogle Scholar
  3. 3.
    A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 55, 961 (2007).CrossRefGoogle Scholar
  4. 4.
    Z.H. Tang, A.J. Thom, M.J. Kramer, and M. Akinc, Intermetallics 16, 1125 (2008).CrossRefGoogle Scholar
  5. 5.
    J.S. Park, R. Sakidja, and J.H. Perepezko, Scr. Mater. 46, 765 (2002).CrossRefGoogle Scholar
  6. 6.
    F. Wang, A.D. Shan, X.P. Dong, and J.S. Wu, Scr. Mater. 56, 737 (2007).CrossRefGoogle Scholar
  7. 7.
    D.M. Berczik, US Patent No. 5,595,616 (1997).Google Scholar
  8. 8.
    J.H. Schneibel, M.J. Kramer, O. Unal, and R.N. Wright, Intermetallics 9, 25 (2001).CrossRefGoogle Scholar
  9. 9.
    J.H. Schneibel, M.J. Kramer, and D.S. Easton, Scr. Mater. 46, 217 (2002).CrossRefGoogle Scholar
  10. 10.
    J.H. Schneibel, Intermetallics 11, 625 (2003).CrossRefGoogle Scholar
  11. 11.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Scr. Mater. 50, 459 (2004).CrossRefGoogle Scholar
  12. 12.
    H. Choe, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 34, 225 (2003).CrossRefGoogle Scholar
  13. 13.
    J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli, Metall. Mater. Trans. A 36, 525 (2005).CrossRefGoogle Scholar
  14. 14.
    B.A. Cook, C.A. Bonino, and J.A. Trainham, J. Mater. Sci. 49, 7750 (2014).CrossRefGoogle Scholar
  15. 15.
    B. Li, G.J. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun, J. Alloys Compd. 609, 80 (2014).CrossRefGoogle Scholar
  16. 16.
    F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko, Acta Mater. 57, 4600 (2009).CrossRefGoogle Scholar
  17. 17.
    J.I. Jung, N.X. Zhou, and J. Luo, J. Mater. Sci. 47, 8308 (2012).CrossRefGoogle Scholar
  18. 18.
    H.A. Zhang, D.Z. Wang, S.P. Chen, and X.Y. Liu, Mater. Sci. Eng. A 345, 118 (2003).CrossRefGoogle Scholar
  19. 19.
    F. Ye, T.C. Lei, and Y. Zhou, Mater. Sci. Eng. A 281, 305 (2000).CrossRefGoogle Scholar
  20. 20.
    W.W. Dong, S.G. Zhu, T. Bai, and Y.L. Luo, Ceram. Int. 41, 13685 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Sun and J.S. Pan, Mater. Lett. 53, 63 (2002).CrossRefGoogle Scholar
  22. 22.
    B. Li, G.J. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun, J. Mater. Sci. Technol. 31, 995 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Roger, F. Audubert, and Y.L. Petitcorps, J. Alloys Compd. 475, 635 (2009).CrossRefGoogle Scholar
  24. 24.
    F.J.J. Van Loo, F.M. Smet, G.D. Rieck, and G. Verspui, High Temp. High Press. 14, 25 (1982).Google Scholar
  25. 25.
    M. Kruger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneible, P. Jehanno, M. Boning, and H. Kestler, Intermetallics 16, 933 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Scudino, G. Liu, M. Sakaliyska, K.B. Surreddi, and J. Eckert, Acta Mater. 57, 4529 (2009).CrossRefGoogle Scholar
  27. 27.
    P.M. Cheng, S.L. Li, G.J. Zhang, J.Y. Zhang, G. Liu, and J. Sun, Mater. Sci. Eng. A 619, 345 (2014).CrossRefGoogle Scholar
  28. 28.
    R. Li, G.J. Zhang, B. Li, X. Chen, S. Ren, J. Wang, and J. Sun, Int. J. Refract. Met. Hard Mater. 68, 65 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Northwest Institute for Non-ferrous Metal ResearchXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China

Personalised recommendations