, Volume 70, Issue 11, pp 2513–2522 | Cite as

Understanding the Corrosion Mechanism of Spring Steel Induced by MnS Inclusions with Different Sizes

  • Weining Shi
  • Shufeng YangEmail author
  • Anping Dong
  • Jingshe Li
Recent Advances in Design and Development of Refractory Metals and Alloys


This work investigated the effects of differently sized MnS inclusions on the spring steel corrosion mechanism. Accelerated immersion tests, electrochemical measurements and Raman spectroscopy were performed in the vicinity of the MnS inclusions. The number of inclusions associated with existing original micro-crevices was smaller than the quantity of inclusions without crevices. The elemental S concentration decreased monotonically with decreases in the MnS inclusion size regardless of the original micro-crevices. Severe corrosion occurred at MnS inclusions with original micro-crevices, so pitting corrosion was greater. Localized corrosion around the MnS inclusions was found to increase and then decrease with increases in the inclusion size up to 12 µm. The greatest degree of corrosion occurred with 5 µm elongated inclusions. Corrosion products were assessed using Raman spectroscopy. A mechanism for corrosion promoted by differently sized MnS inclusions was proposed.



The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51474085 and 51674023).


  1. 1.
    F. Dubois, C. Mendibide, T. Pagnier, F. Perrard, and C. Duret, Corros. Sci. 50, 3401 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. Nie, W. Hui, W. Fu, and Y. Weng, J. Iron. Steel Res. Int. 14, 53 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Zhang, Y. Liu, C. Jiang, and J. Xiao, J. Iron. Steel Res. Int. 18, 49 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari, and G. Raghavendra, Opt. Laser. Eng. 50, 678 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Furuya and T. Abe, Mater. Des. 32, 1101 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Kubota, T. Suzuki, D. Hirakami, and K. Ushioda, ISIJ Int. 55, 2667 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Mayer, R. Schuller, U. Karr, M. Fitzka, D. Irrasch, M. Hahn, and M. Bacher-Höchst, Int. J. Fatigue 93, 309 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Sandaiji, E. Tamura, and T. Tsuchida, Proc. Mater. Sci. 3, 894 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Komazaki, K. Kobayashi, T. Misawa, and T. Fukuzumi, Corros. Sci. 47, 2450 (2005).CrossRefGoogle Scholar
  10. 10.
    Z. Wu, R. Hu, T. Zhang, H. Zhou, and J. Li, Mater. Sci. Eng. A 701, 214 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Saberifar, A.R. Mashreghi, M. Mosalaeepur, and S.S. Ghasemi, Mater. Des. 35, 720 (2012).CrossRefGoogle Scholar
  12. 12.
    H.Y. Ha, C.J. Park, and H.S. Kwon, Corros. Sci. 49, 1266 (2007).CrossRefGoogle Scholar
  13. 13.
    T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, and K.V. Grigorovich, Corros. Sci. 80, 299 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Li, J. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong, J. Alloys Compd. 673, 28 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Wohlschlögel, R. Steegmüller, and A. Schüβler, JMEPEG 23, 2635 (2014).CrossRefGoogle Scholar
  16. 16.
    Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P. Hodgson, and D. Fabijanic, Scripta Mater. 141, 94 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C.R. Hutchinson, J. Electrochem. Soc. 164, C250 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Chiba, M. Koyama, E. Akiyama, and T. Nishimura, J. Electrochem. Soc. 165, C19 (2018).CrossRefGoogle Scholar
  19. 19.
    N. Parvathavarthini, R.K. Gupta, A.V. Kumar, S. Ramya, and U.K. Mudali, Corros. Sci. 53, 3202 (2011).CrossRefGoogle Scholar
  20. 20.
    N. Shimahashi, I. Muto, Y. Sugawara, and N. Hara, J. Electrochem. Soc. 160, C262 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, S. Zheng, B. Zhang, and X. Ma, Corros. Sci. 111, 414 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Chiba, I. Muto, Y. Sugawara, and N. Hara, Corros. Sci. 106, 25 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Jeon, H. Kim, and Y. Park, Corros. Sci. 87, 1 (2014).CrossRefGoogle Scholar
  24. 24.
    X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang, Mater. Des. 65, 682 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Xie, J. Zhang, T. Aldemir, and R. Denning, Reliab. Eng. Syst. Saf. 172, 239 (2018).CrossRefGoogle Scholar
  26. 26.
    C. Cheng, L. Klinkenberg, Y. Ise, J. Zhao, E. Tada, and A. Nishikata, Corros. Sci. 118, 217 (2017).CrossRefGoogle Scholar
  27. 27.
    M.A. Baker and J.E. Castle, Corros. Sci. 34, 667 (1993).CrossRefGoogle Scholar
  28. 28.
    P. Schmuki, H. Hildebrand, A. Friedrich, and S. Virtanen, Corros. Sci. 47, 1239 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Jeon, S. Kim, M. Choi, J. Kim, K. Kim, and Y. Park, Corros. Sci. 75, 367 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Weining Shi
    • 1
    • 2
  • Shufeng Yang
    • 1
    • 2
    Email author
  • Anping Dong
    • 1
    • 2
  • Jingshe Li
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations