Advertisement

JOM

, Volume 70, Issue 10, pp 2082–2087 | Cite as

A Study on the Influence of Scanning Strategies on the Levelness of the Melt Track in Selective Laser Melting Process of Stainless Steel Powder

  • K. Q. Le
  • C. Tang
  • C. H. WongEmail author
Multiphase Flows in Materials Processing
  • 300 Downloads

Abstract

By using a numerical model for a selective laser melting process, this study investigates the melt pool behaviours and the resulting defects due to different scanning strategies. Two common scanning patterns were tested: sequential and boustrophedon. The study found that sequential scanning strategy leads to a non-flat printed surface, while the boustrophedon strategy produces a flat printed surface. At the beginning of the track, the molten material is pulled from the hot laser spot to the cold tail by the Marangoni force leading to an increase in the melt pool height of the sequential and alternated strategies. On the other hand, due to the deep keyhole and the high cooling rate when the laser is switched off, a recess is formed at the end of the tracks. Similar phenomena can be observed in the boustrophedon scanning strategy at the start and ending of the track.

References

  1. 1.
    E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol. 249, 255 (2017).CrossRefGoogle Scholar
  2. 2.
    C. Panwisawas, C. Qiu, and M.J. Anderson, J. Comput. Mater. Sci. 126, 479 (2017).CrossRefGoogle Scholar
  3. 3.
    M.X. Gan and C.H. Wong, J. Eur. Ceramic. Soc. 37, 4147 (2017).CrossRefGoogle Scholar
  4. 4.
    C.Y. Yap, C.K. Chua, and Z.L. Dong, Virtual Phys. Prototyp. 11, 21 (2016).CrossRefGoogle Scholar
  5. 5.
    D.K. Do and P. Li, Virtual Phys. Prototyp. 11, 41 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Thijs, K. Kempen, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 1809 (2013).CrossRefGoogle Scholar
  7. 7.
    Q.Y. Lu and C.H. Wong, Virtual Phys. Prototyp. 12, 301 (2017).CrossRefGoogle Scholar
  8. 8.
    Q.Y. Lu and C.H. Wong, Virtual Phys. Prototyp. 13, 39 (2018).CrossRefGoogle Scholar
  9. 9.
    A. Foroozmehr, M. Badrossamay, and E. Foroozmehr, Mater. Des. 89, 255 (2016).CrossRefGoogle Scholar
  10. 10.
    C. Körner, B. Andreas, and A. Elham, Model Simul. Mater. Sci. Eng. 21, 085011 (2013).CrossRefGoogle Scholar
  11. 11.
    Y.S. Lee and W. Zhang, Addit. Manuf. 12, 178 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, and G.J. Wagner, Acta Mater. 134, 324 (2017).CrossRefGoogle Scholar
  13. 13.
    C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, Progress Comput. Fluid Dyn. Int. J. 12, 140 (2012).CrossRefGoogle Scholar
  14. 14.
    H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).CrossRefGoogle Scholar
  15. 15.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  16. 16.
    S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, J. Fluids Eng. 126, 193 (2004).CrossRefGoogle Scholar
  17. 17.
    L. Han, F.W. Liou, and S. Musti, J. Heat Trans. 127, 1005 (2005).CrossRefGoogle Scholar
  18. 18.
    M.X. Gan and C.H. Wong, J. Mater. Process. Technol. 238, 474 (2016).CrossRefGoogle Scholar
  19. 19.
    V. Bobkov, L. Fokin, E. Petrov, V. Popov, V. Rumiantsev, and A.I. Savvatimsky, IAEA, Vienna (2008).Google Scholar
  20. 20.
    T. Roehling, S. Wu, S.A. Khairallah, J.D. Roehling, S. Soezeri, M.F. Crumb, and M.J. Matthews, Acta Mater. 128, 197 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations