Skip to main content

Advertisement

Log in

Integrated Computational Materials Engineering in Solar Plants: The Virtual Materials Design Project

  • ICME - 10 Years Later: Success and Challenges
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The high temperatures required for efficient operation of solar thermal power plants constitutes one of the major challenges of this technology. Gaining insight into materials behavior at very high temperatures is critical to improve their techno-economic feasibility. Standard material characterization approaches become inefficient, as extensive testing campaigns are required. We propose a multiscale–multiphysical approach that accounts for materials composition to (1) predict the behavior of both Inconel 625 and new solar salts, and (2) assess the thermomechanical performance of key components. We carried out a complete thermoelastic multiscale analysis that spans six time and length scales in a single simulation platform, combining discrete and continuum tools (from quantum to continuum mechanics). These applications show the substantial economic benefits that may be achieved by an ICME approach in the energy sector, reducing the cost of prototypes while decreasing development times and maintenance costs due to a better understanding of materials behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Creutzig, P. Agoston, J.C. Goldschmidt, G. Luderer, G. Nemet, and R.C. Pietzcker, Nat. Energy 2, 17140 (2017).

    Article  Google Scholar 

  2. C. Parrado, A. Girard, F. Simon, and E. Fuentealba, Energy 94, 422–430 (2016).

    Article  Google Scholar 

  3. H. Zhang, W. Kong, T. Tan, and J. Baeyens, Energy 139, 52–64 (2017).

    Article  Google Scholar 

  4. National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Academies Press, 2008).

    Google Scholar 

  5. W.A. Curtin, A. Needleman, M. Ortiz, R. Phillips, E. Kaxiras, G. Cedar, and D. Farkas, Virtual Design and Testing of Materials: A Multiscale Approach (Providence, RI: Brown University, 2006).

    Google Scholar 

  6. National Nuclear Security Administration, Program Statement for the Advanced Simulation and Computing (ASC) Predictive Science Academic Alliance Program (PSAAP) (2008).

  7. J. Allison, D. Backman, and L. Christodoulou, JOM 58, 25–27 (2006).

    Article  Google Scholar 

  8. M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science (New York: Wiley, 2012).

    Book  Google Scholar 

  9. J. Llorca and C. González, Virtual mechanical testing of composites: from materials to components, in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), The Minerals, Metals & Materials Society (TMS) (New York: Wiley, 2011), pp. 121–127.

  10. J. LLorca, C. González, J.M. Molina-Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. Rodríguez, S. Sádaba, R. Muñoz, and L. Canal, Adv. Mater. 23, 5130–5147 (2011).

    Article  Google Scholar 

  11. D. Ball, T. Limer, and R. Bridges, A case study on the application of ICME in aircraft design, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences (2012).

  12. R.J. Glamm, D.M. Rosenbladt, E.D. Pripstein, and J.D. Cotton, Recent progress in implementation of ICME for metallic materials in the airframe industry, in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, (AIAA 2015-0199).

  13. M. Sangid, J.F. Matlik, A. Keskin, B.H. Thacker, B.J. Bichon, D.L. Ball, S.P. Engelstad, C. Ward, V. Venkatesh, H.A. Kim, V. Saraf, and R. Gorham, Integrating ICME practices into design systems and structural analysis, in 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-0874).

  14. J. Gong, D. Snyder, T. Kozmel, C. Kern, J.E. Saal, I. Berglund, J. Sebastian, and G. Olson, JOM 69, 880 (2017).

    Article  Google Scholar 

  15. D.G. Backman, D.Y. Wei, D.D. Whitis, M.B. Buczek, P.M. Finnigan, and D. Gao, JOM 58, 36–41 (2006).

    Article  Google Scholar 

  16. B. Cowles, D. Backman, and R. Dutton, Integr. Mater. Manuf. Innov. 1, 2 (2012).

    Article  Google Scholar 

  17. J. Allison, M. Li, C. Wolverton, and X. Su, JOM 58, 28–35 (2006).

    Article  Google Scholar 

  18. V. Savic, L. Hector, H. Ezzat, A. Sachdev, J. Quinn, R. Krupitzer, and X. Sun, SAE Tech Pap, 2015-01-0459 (2015).

  19. A. Shaik, Y. Kalariya, R. Pathan, and A. Salvi, ICME based hierarchical design using composite materials for automotive structures, in Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), The Minerals, Metals & Materials Series, ed. P. Mason, et al. (Springer, Cham, 2017).

  20. W.J. Joost and P.E. Krajewski, Scr. Mater. 128, 107–112 (2017).

    Article  Google Scholar 

  21. W.J. Joost, JOM 64, 1032–1038 (2012).

    Article  Google Scholar 

  22. H. Xu, Y. Li, and D. Zeng, SAE Int. J. Mater. Manuf. 10, 274–281 (2017).

    Article  Google Scholar 

  23. L. Robinson, JOM 63, 30–34 (2011).

    Article  Google Scholar 

  24. S.J. Zinkle, K.A. Terrani, and L.L. Snead, Curr. Opin. Solid State Mater. Sci. 20, 401–410 (2016).

    Article  Google Scholar 

  25. A. Cruzado, B. Gan, M. Jimenez, D. Barba, K. Ostolaza, A. Linaza, J.M. Molina-Aldareguia, J. Llorca, and J. Segurado, Acta Mater. 98, 242–253 (2015).

    Article  Google Scholar 

  26. Abengoa Research, Abengoa Research Strategic Research Agenda, Abengoa, Seville, Spain, unpublished research (2012).

  27. J. Fish, Multiscale Methods: Bridging the Scales in Science and Engineering (Oxford: Oxford University Press, 2010).

    MATH  Google Scholar 

  28. F. Feyel and J.L. Chaboche, Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000).

    Article  Google Scholar 

  29. J. Segurado, R.A. Lebensohn, J. LLorca, and C.N. Tomé, Int. J. Plast 28, 124–140 (2012).

    Article  Google Scholar 

  30. F. Montero-Chacón, S. Zaghi, R. Rossi, E. García-Pérez, I. Heras-Pérez, X. Martínez, S. Oller, and M. Doblaré, Finite Elem. Anal. Des. 127, 31–43 (2017).

    Article  Google Scholar 

  31. J.M. Ortiz-Roldan, A.R. Ruiz-Salvador, S. Calero, F. Montero-Chacón, E. García-Pérez, J. Segurado, I. Martin-Bragado, and S. Hamad, Phys. Chem. Chem. Phys. 17, 15912–15920 (2015).

    Article  Google Scholar 

  32. J.M. Ortiz-Roldan, G. Esteban-Manzanares, S. Lucarini, S. Calero, J. Segurado, A.R. Ruiz-Salvador, S. Hamad, and F. Montero-Chacón, Fitting electron density as a physically sound basis for the development of interatomic potentials of complex alloys, unpublished research (2017).

  33. W. Chen, G. Xu, I. Martin-Bragado, and Y. Cui, Solid State Sci. 41, 19–24 (2015).

    Article  Google Scholar 

  34. ASTM B444-16e1, Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube (West Conshohocken, PA: ASTM International, 2016).

    Google Scholar 

  35. E. Shapiro and G.E. Dieter, Metall. Trans. 1, 1711–1719 (1970).

    Article  Google Scholar 

  36. J.P. Pedron and A. Pineau, Mater. Sci. Eng. 56, 143–156 (1982).

    Article  Google Scholar 

  37. C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Mater. Sci. Eng., A 510, 289–294 (2009).

    Article  Google Scholar 

  38. M. Prieto-Depedro, I. Martin-Bragado, and J. Segurado, Int. J. Plast 68, 98–110 (2015).

    Article  Google Scholar 

  39. L.P. Kadanoff, J. Stat. Phys. 137, 777–797 (2009).

    Article  MathSciNet  Google Scholar 

  40. H. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531–618 (1973).

    Article  Google Scholar 

  41. G. Martin, N. Ochoa, K. Sa, E. Herv-Luanco, and G. Cailletaud, Int. J. Solids Struct. 51, 1175–1187 (2014).

    Article  Google Scholar 

  42. T. Luther and C. Könke, Eng. Fract. Mech. 76, 2332–2343 (2009).

    Article  Google Scholar 

  43. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Vol. 131 (Cambridge: Cambridge University Press, 2007).

    Book  MATH  Google Scholar 

  44. J.I. Beltrán, J. Wang, F. Montero-Chacón, and Y. Cui, Sol. Energy 155, 154–166 (2017).

    Article  Google Scholar 

  45. J. Hafner, J. Comput. Chem. 29, 2044–2078 (2008).

    Article  Google Scholar 

  46. J.D. Gale, J. Chem. Soc., Faraday Trans. 93, 629–637 (1997).

    Article  Google Scholar 

  47. S. Plimpton, P. Crozier, and A. Thompson, Sandia Natl. Lab. 18, 43 (2007).

    Google Scholar 

  48. CIMNE. GiD-LAMMPS: GiD Problem Type for LAMMPS Molecular Dynamics Code, unpublished research (2015).

  49. A. Martin-Bragado, G. Rivera, J.L. Valles, and M.J. Gomez-Selles, Caturla. Comput. Phys. Commun. 184, 2703–2710 (2013).

    Article  Google Scholar 

  50. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, and W.A. Oates, Calphad 26, 175–188 (2002).

    Article  Google Scholar 

  51. IMDEA Materials, Capsul (2015). https://materials.imdea.org/research/simulation-tools/capsul/. Accessed 1 April 2018.

  52. P. Dadvand, J. Mora, C. González, A. Arraez, P. Ubach, and E. Oñate. Kratos: an object-oriented environment for development of multi-physics analysis software, in WCCM V, Fifth World Congress on Computational Mechanics (2002).

  53. Simulia, ABAQUS 6.13 User’s Manual (Providence, RI: Dassault Systems, 2013).

    Google Scholar 

  54. R. Ribó, M. Pasenau, E. Escolano, J. Pérez, A. Coll, and A. Melendo, GiD The Personal Pre and Postprocessor. Reference Manual, CIMNE, Barcelona, Spain, unpublised research (2006).

  55. C. Rycroft, Voro++: a three-dimensional Voronoi cell library in C++ (2009).

  56. M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3, 5 (2014).

    Article  Google Scholar 

  57. MATLAB 2014b (The Mathworks, Inc., Natick, MA).

Download references

Acknowledgements

The authors gratefully acknowledge the funding provided by Abengoa S.A. within the framework of the VMD project. The authors would also like to acknowledge all the researchers that collaborated in this project during the 2012–2016 period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Montero-Chacón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero-Chacón, F., Chiumenti, M., Segurado, J. et al. Integrated Computational Materials Engineering in Solar Plants: The Virtual Materials Design Project. JOM 70, 1659–1669 (2018). https://doi.org/10.1007/s11837-018-2970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2970-5

Navigation