, Volume 70, Issue 8, pp 1589–1597 | Cite as

Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting

  • John D. Roehling
  • Aurélien Perron
  • Jean-Luc Fattebert
  • Tomorr Haxhimali
  • Gabe Guss
  • Tian T. Li
  • David Bober
  • Adam W. Stokes
  • Amy J. Clarke
  • Patrice E. A. Turchi
  • Manyalibo J. Matthews
  • Joseph T. McKeownEmail author
Additive Manufacturing: Integrated Computational and Experimental Methods


Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.



This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Work was supported by the Laboratory Directed Research and Development (LDRD) Program under project tracking Code 18-SI-003. TEM work was performed at the Colorado School of Mines and was supported by A.J.C.’s Early Career Award from the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Award No. DE-SC0016061. J.-L.F. acknowledges support from the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. DOE, Office of Science, and the National Nuclear Security Administration. The authors thank Nick Teslich at LLNL for his impeccable work on the FIB specimen preparation for TEM and John Mangum at CSM for his help with the NanoMill®.


  1. 1.
    S.H. Huang, P. Liu, A. Mokasdar, and L. Hou, Int. J. Adv. Manuf. 67, 1191 (2013).CrossRefGoogle Scholar
  2. 2.
    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
  3. 3.
    S.S. Babu and R. Goodridge, Mater. Sci. Technol. 31, 881 (2015).CrossRefGoogle Scholar
  4. 4.
    T. Kelner, The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE (2015). Accessed Dec 2017.
  5. 5.
    M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).CrossRefGoogle Scholar
  6. 6.
    W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).CrossRefGoogle Scholar
  7. 7.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  8. 8.
    M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King, Acta Mater. 114, 33 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Sci. Rep. 7, 4085 (2017).CrossRefGoogle Scholar
  10. 10.
    R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, and S.S. Babu, Mater. Sci. Technol. 31, 931 (2015).CrossRefGoogle Scholar
  11. 11.
    T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb, and M.J. Matthews, Acta Mater. 128, 197 (2017).CrossRefGoogle Scholar
  12. 12.
    T.S. Hutchison, G. Ocampo, and G.J.C. Carpenter, Scr. Metall. 19, 635 (1985).CrossRefGoogle Scholar
  13. 13.
    C. Leyens and M. Peters, Titanium and Titanium Alloys (Weinheim: Wiley, 2003).CrossRefGoogle Scholar
  14. 14.
    S. Hanada, H. Matsumoto, and S. Watanabe, Int. Congr. Ser. 1284, 239 (2005).CrossRefGoogle Scholar
  15. 15.
    C. Baker, Met. Sci. J. 5, 92 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, and J. Eckert, Sci. Technol. Adv. Mater. 14, 055004 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Schwab, K. Prashanth, L. Löber, U. Kühn, and J. Eckert, Metals 5, 686 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Fischer, P. Lahuerte, P. Acquier, D. Joguet, L. Peltier, T. Petithory, K. Anselme, and P. Mille, Mater. Sci. Eng. C 75, 341 (2017).CrossRefGoogle Scholar
  19. 19.
    D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Procedia Eng. 36, 160 (2012).CrossRefGoogle Scholar
  20. 20.
    A.H. Hussein, M.A.-H. Gepreel, M.K. Gouda, A.M. Hefnawy, and S.H. Kandil, Mater. Sci. Eng. C 61, 574 (2016).CrossRefGoogle Scholar
  21. 21.
    T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, and P. Lugara, J. Mater. Process. Technol. 191, 364 (2007).CrossRefGoogle Scholar
  22. 22.
    M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).CrossRefGoogle Scholar
  23. 23.
    M.R. Dorr, J.-L. Fattebert, M.E. Wickett, J.F. Belak, and P.E.A. Turchi, J. Comput. Phys. 229, 626 (2010).MathSciNetCrossRefGoogle Scholar
  24. 24.
    J.-L. Fattebert, M.E. Wickett, and P.E.A. Turchi, Acta Mater. 62, 89 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Perron, J.D. Roehling, P.E.A. Turchi, J.-L. Fattebert, and J.T. McKeown, Model. Simul. Mater. Sci. Eng. 26, 014002 (2018).CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, H. Liu, and Z. Jin, CALPHAD 25, 305 (2001).CrossRefGoogle Scholar
  27. 27.
    Y. Liu, T. Pan, L. Zhang, D. Yu, and Y. Ge, J. Alloys Compd. 476, 429 (2009).CrossRefGoogle Scholar
  28. 28.
    R. Kobayashi, Physica D 63, 410 (1993).CrossRefGoogle Scholar
  29. 29.
    V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, and A. Khajepour, Acta Mater. 60, 1633 (2012).CrossRefGoogle Scholar
  30. 30.
    T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, and L.E. Levine, Acta Mater. 139, 244 (2017).CrossRefGoogle Scholar
  31. 31.
    A.T. D’Annessa, Weld. J., Weld. Res. Suppl. 49, 41 (1970).Google Scholar
  32. 32.
    T. Anthony and H. Cline, J. Appl. Phys. 48, 3895–3900 (1977).CrossRefGoogle Scholar
  33. 33.
    P. Wei, Y. Chen, J. Ku, and C. Ho, Metall. Mater. Trans. B 34, 421 (2003).CrossRefGoogle Scholar
  34. 34.
    W. Kurz and D.J. Fisher, Fundmentals of Solidification (Zürich: Trans Tech, 1984).Google Scholar
  35. 35.
    G.E. Lloyd, Mineral. Mag. 51, 3 (1987).CrossRefGoogle Scholar
  36. 36.
    J.D. Hunt, in Proceedings of the International Conference on Solidification and Casting of Metals, The Metals Society, London, 1979.Google Scholar
  37. 37.
    W. Kurz and D.J. Fischer, Acta Metall. 29, 11 (1981).CrossRefGoogle Scholar
  38. 38.
    J.D. Hunt and S.-Z. Lu, Metall. Mater. Trans. A 27, 611 (1996).CrossRefGoogle Scholar
  39. 39.
    D. Ma and P.R. Sahm, Metall. Mater. Trans. A 29, 1113 (1998).CrossRefGoogle Scholar
  40. 40.
    C. Huang and S. Kou, Weld. J. 80, 46 (2001).Google Scholar
  41. 41.
    S.S. Babu, J.W. Elmer, J.M. Vitek, and S.A. David, Acta Mater. 50, 4763 (2002).CrossRefGoogle Scholar
  42. 42.
    R. Trivedi, S.A. David, M.A. Eshelman, J.M. Vitek, S.S. Babu, T. Hong, and T. DebRoy, J. Appl. Phys. 93, 4885 (2003).CrossRefGoogle Scholar
  43. 43.
    S.J. Pennycook, Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
  44. 44.
    H. Okamoto, Nb-Ti Phase Diagram, ASM International Materials Park, OH (2016). Accessed Dec 2017.
  45. 45.
    U.S. Bertoli, G. Guss, S. Wu, M.J. Matthews, and J.M. Schoenung, Mater. Des. 135, 385 (2017).CrossRefGoogle Scholar
  46. 46.
    M.J. Aziz, J. Appl. Phys. 53, 1158 (1982).CrossRefGoogle Scholar
  47. 47.
    W.J. Boettinger and J.A. Warren, J. Cryst. Growth 200, 583 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • John D. Roehling
    • 1
  • Aurélien Perron
    • 1
  • Jean-Luc Fattebert
    • 2
  • Tomorr Haxhimali
    • 1
  • Gabe Guss
    • 3
  • Tian T. Li
    • 1
  • David Bober
    • 4
  • Adam W. Stokes
    • 5
  • Amy J. Clarke
    • 5
  • Patrice E. A. Turchi
    • 1
  • Manyalibo J. Matthews
    • 1
  • Joseph T. McKeown
    • 1
    Email author
  1. 1.Materials Science DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Laser System Engineering OperationsLawrence Livermore National LaboratoryLivermoreUSA
  4. 4.Materials Engineering DivisionLawrence Livermore National LaboratoryLivermoreUSA
  5. 5.George S. Ansell Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA

Personalised recommendations