Advertisement

JOM

, Volume 70, Issue 8, pp 1611–1615 | Cite as

Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg–Zn–Ca Alloy

  • Yuzhou DuEmail author
  • Mingyi Zheng
  • Bailing Jiang
  • Kesong Zhou
Technical Communication

Abstract

The microstructure of an Mg–Zn–Ca extrusion was investigated by transmission electron microscopy, and the interaction between dynamic precipitation and dynamic recrystallization was analyzed. The results showed that dynamic precipitation significantly affected the microstructure of the as-extruded Mg–Zn–Ca alloy. The pinning effects of precipitates on dislocations effectively prohibited dynamic recrystallization processes, while the grain boundary precipitate Ca2Mg6Zn3, inhibited the growth of dynamically recrystallized grains. Consequently, a bimodal microstructure with fine dynamically recrystallized (DRXed) grains and elongated deformed regions was obtained for the Mg–Zn–Ca extrusion. High-resolution transmission electron microscopy indicated that the intragranular precipitate MgZn2 had a crystal orientation relationship with α-Mg in the form of (0002)Mg//(10–13)MgZn2 and [1–100]Mg//[1–210]MgZn2, which was beneficial for strength improvement.

Notes

Acknowledgements

The authors are grateful for the financial support from Shaanxi Provincial Department of Education Fund (No. 17JK0538).

References

  1. 1.
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).CrossRefGoogle Scholar
  2. 2.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Mater. Des. 85, 549 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, JOM 66, 566 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Lu, G. Zhao, J. Zhou, C. Zhang, L. Chen, and S. Tang, J. Alloys Compd. 732, 257 (2018).CrossRefGoogle Scholar
  5. 5.
    X. Zheng, W. Du, Z. Wang, S. Li, K. Liu, and X. Du, Mater. Lett. 212, 155 (2018).CrossRefGoogle Scholar
  6. 6.
    C.-J. Li, H.-F. Sun, X.-W. Li, J.-L. Zhang, W.-B. Fang, and Z.-Y. Tan, J. Alloys Compd. 652, 122 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Somekawa and T. Mukai, Mater. Sci. Eng. A 459, 366 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. Zhou, Z. Chen, J. Ji, and Z. Sun, Mater. Sci. Eng. A 707, 110 (2017).CrossRefGoogle Scholar
  9. 9.
    Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Mater. Sci. Eng. A 576, 6 (2013).CrossRefGoogle Scholar
  10. 10.
    J.D. Robson, D.T. Henry, and B. Davis, Acta Mater. 57, 2739 (2009).CrossRefGoogle Scholar
  11. 11.
    F.J. Humphreys, Acta Metall. 25, 1323 (1977).CrossRefGoogle Scholar
  12. 12.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Boston: Elsevier, 2004), pp. 11–60.CrossRefGoogle Scholar
  13. 13.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Mater. Sci. Eng. A 620, 164 (2015).CrossRefGoogle Scholar
  14. 14.
    S.W. Xu, K. Oh-ishi, H. Sunohara, and S. Kamado, Mater. Sci. Eng. A 558, 356 (2012).CrossRefGoogle Scholar
  15. 15.
    A.C. Hänzi, F.H. Dalla Torre, A.S. Sologubenko, P. Gunde, R. Schmid-Fetzer, M. Kuehlein, J.F. Löffler, and P.J. Uggowitzer, Philos. Mag. Lett. 89, 377 (2009).CrossRefGoogle Scholar
  16. 16.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964).CrossRefGoogle Scholar
  17. 17.
    P.M. Jardim, G. Solorzano, and J.B. Vander Sande, Mater. Sci. Eng. A 381, 196 (2004).CrossRefGoogle Scholar
  18. 18.
    X. Gao and J.F. Nie, Scr. Mater. 56, 645 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yuzhou Du
    • 1
    • 2
    Email author
  • Mingyi Zheng
    • 3
  • Bailing Jiang
    • 1
    • 2
  • Kesong Zhou
    • 1
    • 4
  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.Shaanxi Province Engineering Research Center for Magnesium AlloyXi’an University of TechnologyXi’anPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  4. 4.Department of New MaterialsGuangzhou General Research Institute of Industrial TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations