, Volume 71, Issue 2, pp 608–612 | Cite as

Synthesis of Spherical Al-Doping LiMn2O4 via a High-Pressure Spray-Drying Method as Cathode Materials for Lithium-Ion Batteries

  • Yannan Zhang
  • Yingjie Zhang
  • Mingyu Zhang
  • Mingli Xu
  • Xue Li
  • Xiaohua YuEmail author
  • Peng Dong
Energy Materials


Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.



Financial support from National Natural Science Foundation of China (Nos. 51764029, 51601081, and 51604132) and Provincial Natural Science Foundation of Yunnan (No. 2017FB085) are gratefully acknowledged.

Supplementary material

11837_2018_2873_MOESM1_ESM.pdf (315 kb)
Supplementary material 1 (PDF 315 kb)


  1. 1.
    C.Y. Wang, G.S. Zhang, S.H. Ge, T. Xu, Y. Ji, X.G. Yang, and Y.J. Leng, Nature 529, 515 (2016).CrossRefGoogle Scholar
  2. 2.
    J.B. Goodenough and K.S. Park, J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
  3. 3.
    K. Zhang, X.P. Han, Z. Hu, X.L. Zhang, Z.L. Tao, and J. Chen, Chem. Soc. Rev. 44, 699 (2015).CrossRefGoogle Scholar
  4. 4.
    Y.M. Sun, H.W. Lee, Z.W. Seh, N. Liu, J. Sun, Y.Z. Li, and Y. Cui, Nat. Energy 1, 1 (2016).Google Scholar
  5. 5.
    X. Hao, X. Lin, W. Lu, and B.M. Bartlett, ACS Appl. Mater. Interfaces 6, 10849 (2014).CrossRefGoogle Scholar
  6. 6.
    O.K. Park, Y. Cho, S. Lee, H.C. Yoo, H.K. Song, and J. Cho, Energy Environ. Sci. 4, 1621 (2011).CrossRefGoogle Scholar
  7. 7.
    Y.N. Zhang, P. Dong, X.H. Yu, S.B. Xia, J.J. Song, R.M. Yang, H.X. Liang, Z.Z. Shi, Y. Yao, X. Li, and Y.J. Zhang, Int. J. Electrochem. Sci. 12, 6853 (2017).CrossRefGoogle Scholar
  8. 8.
    M.J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, Nano Lett. 14, 993 (2014).CrossRefGoogle Scholar
  9. 9.
    K. Zhang, X.P. Han, Z. Hu, X.L. Zhang, Z.L. Tao, and J. Chen, Chem. Soc. Rev. 44, 699 (2015).CrossRefGoogle Scholar
  10. 10.
    K. Peng and T.F. Peng, Ceram. Int. 40, 15345 (2014).CrossRefGoogle Scholar
  11. 11.
    J.B. Jiang, K. Du, Y.B. Cao, Z.D. Peng, and G.R. Hu, J. Funct. Mater. 45, 08120 (2014).Google Scholar
  12. 12.
    J.J. Huang, F. Yang, Y. Guo, C.C. Peng, H.L. Bai, J.H. Peng, and J.M. Guo, Ceram. Int. 40, 15345 (2015).Google Scholar
  13. 13.
    X. Wang, Y.N. Zhang, C. Liu, Z.T. Yuan, X.H. Yu, Y. Zhong, and Z.L. Zhan, Int. J. Electrochem. Sci. 12, 12009 (2017).CrossRefGoogle Scholar
  14. 14.
    K.J. Kim, J.H. Lee, T.Y. Koh, and M.H. Kim, Electrochim. Acta 200, 84 (2016).CrossRefGoogle Scholar
  15. 15.
    W. Xu, A. Yuan, L. Tian, and Y. Wang, J. Appl. Electrochem. 41, 453 (2011).CrossRefGoogle Scholar
  16. 16.
    F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, and R. Holze, Electrochim. Acta 93, 301 (2013).CrossRefGoogle Scholar
  17. 17.
    I. Taniguchi, N. Fukuda, and M. Konarova, Powder Technol. 181, 228 (2008).CrossRefGoogle Scholar
  18. 18.
    I. Taniguchi and Z. Bakenov, Powder Technol. 159, 55 (2005).CrossRefGoogle Scholar
  19. 19.
    Y.X. Gu, Z.L. Tang, Y. Deng, and L. Wang, Electrochim. Acta 93, 165 (2013).CrossRefGoogle Scholar
  20. 20.
    D.L. Guo, Z.R. Chang, H.W. Tang, B. Li, X.H. Xu, X.Z. Yuan, and H.J. Wang, Electrochim. Acta 123, 254 (2014).CrossRefGoogle Scholar
  21. 21.
    Y.N. Zhang, P. Dong, M.Y. Zhang, X.L. Sun, X.H. Yu, J.J. Song, Q. Meng, X. Li, and Y.J. Zhang, J. Appl. Electrochem. 48, 135 (2018).CrossRefGoogle Scholar
  22. 22.
    T. Yi, L. Yin, Y. Ma, H. Shen, Y. Zhu, and R. Zhu, Ceram. Int. 39, 4673 (2013).CrossRefGoogle Scholar
  23. 23.
    B.S. Liu, Z.B. Wang, Y. Zhang, F.D. Yu, Y. Xue, K. Ke, and F.F. Li, J. Alloys Compd. 622, 902 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Fu, H. Jiang, Y. Hu, Y. Dai, L. Zhang, and C. Li, J. Ind. Eng. Chem. 54, 3800 (2015).CrossRefGoogle Scholar
  25. 25.
    X.H. Yu and Z.L. Zhan, Nanoscale Res. Lett. 9, 516 (2014).CrossRefGoogle Scholar
  26. 26.
    S. Lee, Y. Cho, H.K. Song, K.T. Lee, and J. Cho, Angew. Chem. Int. Ed. 51, 8748 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yannan Zhang
    • 1
  • Yingjie Zhang
    • 1
  • Mingyu Zhang
    • 2
  • Mingli Xu
    • 1
  • Xue Li
    • 1
  • Xiaohua Yu
    • 1
    • 3
    Email author
  • Peng Dong
    • 1
  1. 1.National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation TechnologyKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Yunnan Provincial Energy Research Institute Co., LTD.KunmingPeople’s Republic of China
  3. 3.National Engineering Research Center of Waste Resource RecoveryKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations